L(s) = 1 | + (−0.733 − 0.680i)3-s + (0.826 + 0.563i)7-s + (0.0747 + 0.997i)9-s + (1.32 − 0.636i)13-s + (−0.826 − 1.43i)19-s + (−0.222 − 0.974i)21-s + (0.826 − 0.563i)25-s + (0.623 − 0.781i)27-s + (−0.365 + 0.632i)31-s + (−0.722 + 1.84i)37-s + (−1.40 − 0.432i)39-s + (−0.0332 − 0.145i)43-s + (0.365 + 0.930i)49-s + (−0.367 + 1.61i)57-s + (0.455 − 1.16i)61-s + ⋯ |
L(s) = 1 | + (−0.733 − 0.680i)3-s + (0.826 + 0.563i)7-s + (0.0747 + 0.997i)9-s + (1.32 − 0.636i)13-s + (−0.826 − 1.43i)19-s + (−0.222 − 0.974i)21-s + (0.826 − 0.563i)25-s + (0.623 − 0.781i)27-s + (−0.365 + 0.632i)31-s + (−0.722 + 1.84i)37-s + (−1.40 − 0.432i)39-s + (−0.0332 − 0.145i)43-s + (0.365 + 0.930i)49-s + (−0.367 + 1.61i)57-s + (0.455 − 1.16i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.871 + 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.871 + 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8125831672\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8125831672\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.733 + 0.680i)T \) |
| 7 | \( 1 + (-0.826 - 0.563i)T \) |
good | 5 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 11 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 13 | \( 1 + (-1.32 + 0.636i)T + (0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 19 | \( 1 + (0.826 + 1.43i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 29 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (0.365 - 0.632i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.722 - 1.84i)T + (-0.733 - 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (0.0332 + 0.145i)T + (-0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 53 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 61 | \( 1 + (-0.455 + 1.16i)T + (-0.733 - 0.680i)T^{2} \) |
| 67 | \( 1 + (0.955 - 1.65i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (1.63 - 1.11i)T + (0.365 - 0.930i)T^{2} \) |
| 79 | \( 1 + (0.365 + 0.632i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 97 | \( 1 + 1.80T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02010075548298563723948983226, −10.28832913895149030494758612534, −8.666909574551318192012537603553, −8.384674358896155912796513765542, −7.12420332631262603013942076682, −6.31544652676262146991686634546, −5.37737642715632960602250969410, −4.53559832269031322605302017410, −2.79054051921709119995551940344, −1.38529926558741575824058485651,
1.54830538513620671623865839789, 3.69269407874133238887112002482, 4.30775460598029860799587350196, 5.48068752052555652537479533080, 6.28527043785033269215236432968, 7.35779744652434649894763564426, 8.492331343020060675186011524153, 9.240310357034639558975934851093, 10.46958859416177443387350263634, 10.82441330119665726532307599614