L(s) = 1 | + 1.41·2-s + 1.73i·3-s + 2.00·4-s + 2.44i·5-s + 2.44i·6-s + 2.82·8-s − 2.99·9-s + 3.46i·10-s + 1.41·11-s + 3.46i·12-s − 4.24·15-s + 4.00·16-s − 7.34i·17-s − 4.24·18-s + 6.92i·19-s + 4.89i·20-s + ⋯ |
L(s) = 1 | + 1.00·2-s + 0.999i·3-s + 1.00·4-s + 1.09i·5-s + 0.999i·6-s + 1.00·8-s − 0.999·9-s + 1.09i·10-s + 0.426·11-s + 1.00i·12-s − 1.09·15-s + 1.00·16-s − 1.78i·17-s − 0.999·18-s + 1.58i·19-s + 1.09i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.90866 + 1.90866i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.90866 + 1.90866i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41T \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.44iT - 5T^{2} \) |
| 11 | \( 1 - 1.41T + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + 7.34iT - 17T^{2} \) |
| 19 | \( 1 - 6.92iT - 19T^{2} \) |
| 23 | \( 1 + 7.07T + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 + 12.2iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 15.5T + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 2.44iT - 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95509561843821468649148461601, −10.23360949161724708978534937655, −9.525225332282960596936064902606, −8.099466575792251826132653316832, −7.11422190130482753024056888433, −6.15972532562694323325234725952, −5.34238552162109844916914362071, −4.16714780119131388009677033715, −3.39718766548221830009475683536, −2.39030839762937116796150187247,
1.23397632067786385446428798108, 2.41067213216291527618734691998, 3.91398293944621002883742720701, 4.88928075364511525773400536876, 6.00090107098210603429995128677, 6.54892801079852363739379340599, 7.81385800512075441609086554650, 8.387623221404211237741243877106, 9.534840604533915201080312237256, 10.88587514871838538762952254697