L(s) = 1 | + (−0.225 + 1.39i)2-s + (0.687 − 1.58i)3-s + (−1.89 − 0.629i)4-s + 2.07i·5-s + (2.06 + 1.31i)6-s + (1.30 − 2.50i)8-s + (−2.05 − 2.18i)9-s + (−2.89 − 0.467i)10-s + 3.98·11-s + (−2.30 + 2.58i)12-s + 1.30·13-s + (3.30 + 1.42i)15-s + (3.20 + 2.38i)16-s + 2.94i·17-s + (3.51 − 2.37i)18-s + 1.09i·19-s + ⋯ |
L(s) = 1 | + (−0.159 + 0.987i)2-s + (0.397 − 0.917i)3-s + (−0.949 − 0.314i)4-s + 0.928i·5-s + (0.842 + 0.538i)6-s + (0.461 − 0.887i)8-s + (−0.684 − 0.729i)9-s + (−0.916 − 0.147i)10-s + 1.20·11-s + (−0.665 + 0.746i)12-s + 0.363·13-s + (0.852 + 0.368i)15-s + (0.802 + 0.597i)16-s + 0.713i·17-s + (0.828 − 0.559i)18-s + 0.251i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.665 - 0.746i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.665 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36211 + 0.610218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36211 + 0.610218i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.225 - 1.39i)T \) |
| 3 | \( 1 + (-0.687 + 1.58i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.07iT - 5T^{2} \) |
| 11 | \( 1 - 3.98T + 11T^{2} \) |
| 13 | \( 1 - 1.30T + 13T^{2} \) |
| 17 | \( 1 - 2.94iT - 17T^{2} \) |
| 19 | \( 1 - 1.09iT - 19T^{2} \) |
| 23 | \( 1 - 7.50T + 23T^{2} \) |
| 29 | \( 1 + 0.865iT - 29T^{2} \) |
| 31 | \( 1 + 3.68iT - 31T^{2} \) |
| 37 | \( 1 - 4.17T + 37T^{2} \) |
| 41 | \( 1 - 7.01iT - 41T^{2} \) |
| 43 | \( 1 - 4.27iT - 43T^{2} \) |
| 47 | \( 1 - 7.50T + 47T^{2} \) |
| 53 | \( 1 + 4.94iT - 53T^{2} \) |
| 59 | \( 1 - 4.88T + 59T^{2} \) |
| 61 | \( 1 + 4.10T + 61T^{2} \) |
| 67 | \( 1 + 2.42iT - 67T^{2} \) |
| 71 | \( 1 - 0.901T + 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 + 10.3iT - 79T^{2} \) |
| 83 | \( 1 + 12.4T + 83T^{2} \) |
| 89 | \( 1 - 8.52iT - 89T^{2} \) |
| 97 | \( 1 + 15.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79053043881244509911555872197, −9.599839951501470788067478807701, −8.854746518512615169323816175957, −8.014248157733384303240741326473, −7.08636653516786645246498734846, −6.53793880148059982634537897612, −5.80983328079861665692885916192, −4.18363940427748196425397475278, −3.06070883362744523026642109375, −1.28383194950219184960404184037,
1.13306658624469536015575344761, 2.76727737874650459432038790991, 3.86955228064073691563334146063, 4.66825328935398338587440993456, 5.49521131470839009339494896398, 7.22351501145316154311514215512, 8.665033846063018283422518419135, 8.899128196136155198336540103192, 9.572966480720893767944921875885, 10.60227921729915010542649678978