Properties

Label 2-588-1.1-c5-0-33
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 65.5·5-s + 81·9-s − 245.·11-s + 434.·13-s + 590.·15-s − 1.10e3·17-s − 2.87e3·19-s − 4.22e3·23-s + 1.17e3·25-s + 729·27-s + 4.96e3·29-s − 8.78e3·31-s − 2.21e3·33-s − 2.44e3·37-s + 3.91e3·39-s − 3.66e3·41-s − 7.19e3·43-s + 5.31e3·45-s + 3.27e3·47-s − 9.92e3·51-s − 3.02e3·53-s − 1.61e4·55-s − 2.58e4·57-s − 5.14e4·59-s − 1.33e4·61-s + 2.85e4·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.17·5-s + 0.333·9-s − 0.611·11-s + 0.713·13-s + 0.677·15-s − 0.925·17-s − 1.82·19-s − 1.66·23-s + 0.375·25-s + 0.192·27-s + 1.09·29-s − 1.64·31-s − 0.353·33-s − 0.293·37-s + 0.412·39-s − 0.340·41-s − 0.593·43-s + 0.391·45-s + 0.216·47-s − 0.534·51-s − 0.147·53-s − 0.717·55-s − 1.05·57-s − 1.92·59-s − 0.458·61-s + 0.837·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 \)
good5 \( 1 - 65.5T + 3.12e3T^{2} \)
11 \( 1 + 245.T + 1.61e5T^{2} \)
13 \( 1 - 434.T + 3.71e5T^{2} \)
17 \( 1 + 1.10e3T + 1.41e6T^{2} \)
19 \( 1 + 2.87e3T + 2.47e6T^{2} \)
23 \( 1 + 4.22e3T + 6.43e6T^{2} \)
29 \( 1 - 4.96e3T + 2.05e7T^{2} \)
31 \( 1 + 8.78e3T + 2.86e7T^{2} \)
37 \( 1 + 2.44e3T + 6.93e7T^{2} \)
41 \( 1 + 3.66e3T + 1.15e8T^{2} \)
43 \( 1 + 7.19e3T + 1.47e8T^{2} \)
47 \( 1 - 3.27e3T + 2.29e8T^{2} \)
53 \( 1 + 3.02e3T + 4.18e8T^{2} \)
59 \( 1 + 5.14e4T + 7.14e8T^{2} \)
61 \( 1 + 1.33e4T + 8.44e8T^{2} \)
67 \( 1 - 3.08e4T + 1.35e9T^{2} \)
71 \( 1 + 4.18e4T + 1.80e9T^{2} \)
73 \( 1 - 3.46e4T + 2.07e9T^{2} \)
79 \( 1 - 7.75e4T + 3.07e9T^{2} \)
83 \( 1 - 1.00e5T + 3.93e9T^{2} \)
89 \( 1 - 4.07e4T + 5.58e9T^{2} \)
97 \( 1 - 1.40e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.402108979184850373613484773864, −8.671521369871877751444029150487, −7.898167524291616087080901357767, −6.55529239654547634993881089896, −6.00914371027962963478502220060, −4.78133924744764873514058081633, −3.70060304537933683646842776416, −2.31172643502052337788849761468, −1.78400884788701691630491324446, 0, 1.78400884788701691630491324446, 2.31172643502052337788849761468, 3.70060304537933683646842776416, 4.78133924744764873514058081633, 6.00914371027962963478502220060, 6.55529239654547634993881089896, 7.898167524291616087080901357767, 8.671521369871877751444029150487, 9.402108979184850373613484773864

Graph of the $Z$-function along the critical line