Properties

Label 2-588-1.1-c5-0-12
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 31.9·5-s + 81·9-s + 260.·11-s − 769.·13-s + 287.·15-s + 1.55e3·17-s − 750.·19-s + 754.·23-s − 2.10e3·25-s + 729·27-s + 6.00e3·29-s + 6.42e3·31-s + 2.34e3·33-s − 4.77e3·37-s − 6.92e3·39-s + 5.42e3·41-s − 1.18e4·43-s + 2.58e3·45-s + 1.74e4·47-s + 1.39e4·51-s + 3.76e4·53-s + 8.33e3·55-s − 6.75e3·57-s − 2.20e4·59-s + 8.17e3·61-s − 2.46e4·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.571·5-s + 0.333·9-s + 0.650·11-s − 1.26·13-s + 0.330·15-s + 1.30·17-s − 0.476·19-s + 0.297·23-s − 0.673·25-s + 0.192·27-s + 1.32·29-s + 1.19·31-s + 0.375·33-s − 0.573·37-s − 0.729·39-s + 0.503·41-s − 0.981·43-s + 0.190·45-s + 1.15·47-s + 0.752·51-s + 1.84·53-s + 0.371·55-s − 0.275·57-s − 0.825·59-s + 0.281·61-s − 0.722·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.284377332\)
\(L(\frac12)\) \(\approx\) \(3.284377332\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 \)
good5 \( 1 - 31.9T + 3.12e3T^{2} \)
11 \( 1 - 260.T + 1.61e5T^{2} \)
13 \( 1 + 769.T + 3.71e5T^{2} \)
17 \( 1 - 1.55e3T + 1.41e6T^{2} \)
19 \( 1 + 750.T + 2.47e6T^{2} \)
23 \( 1 - 754.T + 6.43e6T^{2} \)
29 \( 1 - 6.00e3T + 2.05e7T^{2} \)
31 \( 1 - 6.42e3T + 2.86e7T^{2} \)
37 \( 1 + 4.77e3T + 6.93e7T^{2} \)
41 \( 1 - 5.42e3T + 1.15e8T^{2} \)
43 \( 1 + 1.18e4T + 1.47e8T^{2} \)
47 \( 1 - 1.74e4T + 2.29e8T^{2} \)
53 \( 1 - 3.76e4T + 4.18e8T^{2} \)
59 \( 1 + 2.20e4T + 7.14e8T^{2} \)
61 \( 1 - 8.17e3T + 8.44e8T^{2} \)
67 \( 1 - 1.30e4T + 1.35e9T^{2} \)
71 \( 1 + 1.23e4T + 1.80e9T^{2} \)
73 \( 1 + 4.36e4T + 2.07e9T^{2} \)
79 \( 1 - 7.67e4T + 3.07e9T^{2} \)
83 \( 1 + 2.18e4T + 3.93e9T^{2} \)
89 \( 1 - 1.36e5T + 5.58e9T^{2} \)
97 \( 1 - 9.30e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.934892363506763234647149182041, −9.113991791316503223734671704512, −8.188000831983854383773409715614, −7.29201958656919184321933107951, −6.36598688716242558748899118855, −5.28771184342674708876054141718, −4.25695826403004166418053211987, −3.04909450570473859424203583454, −2.09448299306356188416019700470, −0.879963474089920637508027276258, 0.879963474089920637508027276258, 2.09448299306356188416019700470, 3.04909450570473859424203583454, 4.25695826403004166418053211987, 5.28771184342674708876054141718, 6.36598688716242558748899118855, 7.29201958656919184321933107951, 8.188000831983854383773409715614, 9.113991791316503223734671704512, 9.934892363506763234647149182041

Graph of the $Z$-function along the critical line