Properties

Label 2-588-1.1-c3-0-9
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $34.6931$
Root an. cond. $5.89008$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 8.16·5-s + 9·9-s + 37.8·11-s + 39.9·13-s + 24.5·15-s + 9.93·17-s − 90.4·19-s + 118.·23-s − 58.2·25-s + 27·27-s − 78.4·29-s + 92.0·31-s + 113.·33-s + 332.·37-s + 119.·39-s + 71.7·41-s − 115.·43-s + 73.5·45-s + 307.·47-s + 29.8·51-s − 403.·53-s + 308.·55-s − 271.·57-s + 593.·59-s + 333.·61-s + 326.·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.730·5-s + 0.333·9-s + 1.03·11-s + 0.851·13-s + 0.421·15-s + 0.141·17-s − 1.09·19-s + 1.07·23-s − 0.466·25-s + 0.192·27-s − 0.502·29-s + 0.533·31-s + 0.598·33-s + 1.47·37-s + 0.491·39-s + 0.273·41-s − 0.411·43-s + 0.243·45-s + 0.955·47-s + 0.0818·51-s − 1.04·53-s + 0.757·55-s − 0.630·57-s + 1.31·59-s + 0.699·61-s + 0.622·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(34.6931\)
Root analytic conductor: \(5.89008\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.192652111\)
\(L(\frac12)\) \(\approx\) \(3.192652111\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 \)
good5 \( 1 - 8.16T + 125T^{2} \)
11 \( 1 - 37.8T + 1.33e3T^{2} \)
13 \( 1 - 39.9T + 2.19e3T^{2} \)
17 \( 1 - 9.93T + 4.91e3T^{2} \)
19 \( 1 + 90.4T + 6.85e3T^{2} \)
23 \( 1 - 118.T + 1.21e4T^{2} \)
29 \( 1 + 78.4T + 2.43e4T^{2} \)
31 \( 1 - 92.0T + 2.97e4T^{2} \)
37 \( 1 - 332.T + 5.06e4T^{2} \)
41 \( 1 - 71.7T + 6.89e4T^{2} \)
43 \( 1 + 115.T + 7.95e4T^{2} \)
47 \( 1 - 307.T + 1.03e5T^{2} \)
53 \( 1 + 403.T + 1.48e5T^{2} \)
59 \( 1 - 593.T + 2.05e5T^{2} \)
61 \( 1 - 333.T + 2.26e5T^{2} \)
67 \( 1 + 743.T + 3.00e5T^{2} \)
71 \( 1 + 728.T + 3.57e5T^{2} \)
73 \( 1 + 801.T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 - 906.T + 5.71e5T^{2} \)
89 \( 1 - 1.11e3T + 7.04e5T^{2} \)
97 \( 1 - 1.48e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18522018965891761794428445904, −9.253365127046020087571541527494, −8.766317850552918171262542531568, −7.69673885293150218470916146712, −6.56169152503891027324090656084, −5.91876082643510898155775867560, −4.52400952071025887119104238588, −3.54636621061499575506738359687, −2.26601637140750958435337990185, −1.14353547864860551483653245678, 1.14353547864860551483653245678, 2.26601637140750958435337990185, 3.54636621061499575506738359687, 4.52400952071025887119104238588, 5.91876082643510898155775867560, 6.56169152503891027324090656084, 7.69673885293150218470916146712, 8.766317850552918171262542531568, 9.253365127046020087571541527494, 10.18522018965891761794428445904

Graph of the $Z$-function along the critical line