L(s) = 1 | + (−1.33 + 2.30i)2-s + (0.397 + 1.68i)3-s + (−2.54 − 4.40i)4-s + (0.5 + 0.866i)5-s + (−4.41 − 1.32i)6-s + (−0.723 + 1.25i)7-s + 8.22·8-s + (−2.68 + 1.34i)9-s − 2.66·10-s + (−3.18 + 5.51i)11-s + (6.41 − 6.04i)12-s + (−0.5 − 0.866i)13-s + (−1.92 − 3.33i)14-s + (−1.26 + 1.18i)15-s + (−5.85 + 10.1i)16-s + 3.28·17-s + ⋯ |
L(s) = 1 | + (−0.941 + 1.63i)2-s + (0.229 + 0.973i)3-s + (−1.27 − 2.20i)4-s + (0.223 + 0.387i)5-s + (−1.80 − 0.541i)6-s + (−0.273 + 0.473i)7-s + 2.90·8-s + (−0.894 + 0.446i)9-s − 0.841·10-s + (−0.959 + 1.66i)11-s + (1.85 − 1.74i)12-s + (−0.138 − 0.240i)13-s + (−0.514 − 0.891i)14-s + (−0.325 + 0.306i)15-s + (−1.46 + 2.53i)16-s + 0.797·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.392775 - 0.293114i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.392775 - 0.293114i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.397 - 1.68i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (1.33 - 2.30i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (0.723 - 1.25i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.18 - 5.51i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.28T + 17T^{2} \) |
| 19 | \( 1 + 2.89T + 19T^{2} \) |
| 23 | \( 1 + (-0.613 - 1.06i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.73 + 8.20i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.20 + 2.08i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.81T + 37T^{2} \) |
| 41 | \( 1 + (2.75 + 4.77i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.60 + 6.24i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.00 - 6.93i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 0.623T + 53T^{2} \) |
| 59 | \( 1 + (-4.93 - 8.55i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.24 - 3.88i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.63 - 2.82i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.19T + 71T^{2} \) |
| 73 | \( 1 - 9.55T + 73T^{2} \) |
| 79 | \( 1 + (7.82 - 13.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.526 + 0.911i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.96T + 89T^{2} \) |
| 97 | \( 1 + (-5.76 + 9.99i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68359587905958002488346764339, −10.04217270324947109694013871580, −9.661574472586989920239600371243, −8.709361255028377936546892272080, −7.85941983588068902808501120839, −7.13874547596973673036532668713, −5.96622441926432329079680241744, −5.27991832393248712391685388293, −4.33098028067215388715330527823, −2.41777783827326841116659126262,
0.37275849673726745289202299225, 1.49830497678016125634671969876, 2.83754714555895636909729542633, 3.50949328833662391108055013914, 5.19126652853948179884469411770, 6.64155857590913126521941469446, 7.87495180836221416866486066411, 8.439753367915034478112092914865, 9.071095806316538194758248788467, 10.21776449130217465444863662987