L(s) = 1 | + (1.26 − 2.18i)2-s + (−0.259 + 1.71i)3-s + (−2.18 − 3.79i)4-s + (0.5 + 0.866i)5-s + (3.41 + 2.73i)6-s + (0.799 − 1.38i)7-s − 6.00·8-s + (−2.86 − 0.890i)9-s + 2.52·10-s + (2.68 − 4.65i)11-s + (7.05 − 2.76i)12-s + (−0.5 − 0.866i)13-s + (−2.01 − 3.49i)14-s + (−1.61 + 0.631i)15-s + (−3.20 + 5.54i)16-s + 3.08·17-s + ⋯ |
L(s) = 1 | + (0.892 − 1.54i)2-s + (−0.150 + 0.988i)3-s + (−1.09 − 1.89i)4-s + (0.223 + 0.387i)5-s + (1.39 + 1.11i)6-s + (0.302 − 0.523i)7-s − 2.12·8-s + (−0.954 − 0.296i)9-s + 0.798·10-s + (0.811 − 1.40i)11-s + (2.03 − 0.797i)12-s + (−0.138 − 0.240i)13-s + (−0.539 − 0.934i)14-s + (−0.416 + 0.162i)15-s + (−0.800 + 1.38i)16-s + 0.748·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.458 + 0.888i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.458 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13082 - 1.85473i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13082 - 1.85473i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.259 - 1.71i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1.26 + 2.18i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.799 + 1.38i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.68 + 4.65i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.08T + 17T^{2} \) |
| 19 | \( 1 - 3.72T + 19T^{2} \) |
| 23 | \( 1 + (0.847 + 1.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.320 - 0.555i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.79 + 4.83i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.445T + 37T^{2} \) |
| 41 | \( 1 + (-3.19 - 5.53i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.82 - 4.90i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.70 - 9.88i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-4.67 - 8.09i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.23 + 5.60i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.64 - 13.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.56T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 + (-2.66 + 4.60i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.87 + 8.44i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 15.7T + 89T^{2} \) |
| 97 | \( 1 + (-0.456 + 0.791i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70942205295751003626452418417, −9.824336403893517542425290269867, −9.303785997791341035856367731124, −7.997004219965508362648807197350, −6.19869986091414763881249546215, −5.47215282547699195542044719296, −4.43015198146304243477972746161, −3.54768059190340504073813725205, −2.88799888915988077487202246710, −1.05779620647284117390699219421,
1.85723959657610170957568931564, 3.63648251777088077974330507825, 5.01478320726098214840256094356, 5.46418578504536311771041163435, 6.58815510700008228266917398395, 7.15972784881198810344038827704, 7.959226295612815494859975187762, 8.809069682007307722762905470485, 9.741951484543492486516956276655, 11.52512181344680607781583307041