# Properties

 Label 2-585-65.64-c1-0-2 Degree $2$ Conductor $585$ Sign $-i$ Analytic cond. $4.67124$ Root an. cond. $2.16130$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 2·4-s − 2.23i·5-s − 3.60·7-s + 2.23i·11-s + 3.60·13-s + 4·16-s + 8.06i·17-s + 4.47i·20-s + 8.06i·23-s − 5.00·25-s + 7.21·28-s + 8.06i·35-s − 3.60·37-s − 11.1i·41-s − 4.47i·44-s + ⋯
 L(s)  = 1 − 4-s − 0.999i·5-s − 1.36·7-s + 0.674i·11-s + 1.00·13-s + 16-s + 1.95i·17-s + 0.999i·20-s + 1.68i·23-s − 1.00·25-s + 1.36·28-s + 1.36i·35-s − 0.592·37-s − 1.74i·41-s − 0.674i·44-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$585$$    =    $$3^{2} \cdot 5 \cdot 13$$ Sign: $-i$ Analytic conductor: $$4.67124$$ Root analytic conductor: $$2.16130$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{585} (64, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 585,\ (\ :1/2),\ -i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.421540 + 0.421540i$$ $$L(\frac12)$$ $$\approx$$ $$0.421540 + 0.421540i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
5 $$1 + 2.23iT$$
13 $$1 - 3.60T$$
good2 $$1 + 2T^{2}$$
7 $$1 + 3.60T + 7T^{2}$$
11 $$1 - 2.23iT - 11T^{2}$$
17 $$1 - 8.06iT - 17T^{2}$$
19 $$1 - 19T^{2}$$
23 $$1 - 8.06iT - 23T^{2}$$
29 $$1 + 29T^{2}$$
31 $$1 - 31T^{2}$$
37 $$1 + 3.60T + 37T^{2}$$
41 $$1 + 11.1iT - 41T^{2}$$
43 $$1 - 43T^{2}$$
47 $$1 + 47T^{2}$$
53 $$1 - 8.06iT - 53T^{2}$$
59 $$1 - 8.94iT - 59T^{2}$$
61 $$1 + 7T + 61T^{2}$$
67 $$1 + 14.4T + 67T^{2}$$
71 $$1 - 15.6iT - 71T^{2}$$
73 $$1 - 7.21T + 73T^{2}$$
79 $$1 - 11T + 79T^{2}$$
83 $$1 + 83T^{2}$$
89 $$1 - 2.23iT - 89T^{2}$$
97 $$1 + 3.60T + 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$