L(s) = 1 | + (0.651 − 1.12i)2-s + (0.151 + 0.262i)4-s + 5-s + (0.5 + 0.866i)7-s + 3·8-s + (0.651 − 1.12i)10-s + (−2.80 + 4.85i)11-s + 3.60·13-s + 1.30·14-s + (1.65 − 2.86i)16-s + (0.197 + 0.341i)17-s + (−0.802 − 1.39i)19-s + (0.151 + 0.262i)20-s + (3.65 + 6.32i)22-s + (−1.5 + 2.59i)23-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s + (0.0756 + 0.131i)4-s + 0.447·5-s + (0.188 + 0.327i)7-s + 1.06·8-s + (0.205 − 0.356i)10-s + (−0.845 + 1.46i)11-s + 1.00·13-s + 0.348·14-s + (0.412 − 0.715i)16-s + (0.0478 + 0.0828i)17-s + (−0.184 − 0.318i)19-s + (0.0338 + 0.0586i)20-s + (0.778 + 1.34i)22-s + (−0.312 + 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.22563 - 0.300272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.22563 - 0.300272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 - 3.60T \) |
good | 2 | \( 1 + (-0.651 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.80 - 4.85i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.197 - 0.341i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.802 + 1.39i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.10 + 7.11i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.80 + 3.12i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.10 + 3.64i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.21T + 47T^{2} \) |
| 53 | \( 1 + 11.2T + 53T^{2} \) |
| 59 | \( 1 + (-5.40 - 9.36i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 + 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (8.40 + 14.5i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 15.2T + 73T^{2} \) |
| 79 | \( 1 + 9.21T + 79T^{2} \) |
| 83 | \( 1 + 5.21T + 83T^{2} \) |
| 89 | \( 1 + (-4.10 + 7.11i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.80 - 13.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66324325828263939207709707771, −10.12237141940256213321673252880, −9.057906034885089972828216129413, −7.941621394492587946477858563754, −7.18248499983267701018513766325, −5.92618970641545711914155846601, −4.85654305130053525472655843335, −3.93897582977018517080391798143, −2.61519630802696832619676073954, −1.77661219824126777575458276923,
1.30514420746995602798904358704, 3.03076952136180675816034940387, 4.37498755968060647550406637600, 5.50098449856334993908599171837, 6.04239136989103537315520057443, 6.94035521265730718962614189013, 8.053640255039971521429320980125, 8.672903650884389366505312317355, 10.05322623360650429975988043255, 10.78723673344519780126440776093