L(s) = 1 | + (−1.15 − 1.99i)2-s + (−1.65 + 2.86i)4-s + 5-s + (0.5 − 0.866i)7-s + 2.99·8-s + (−1.15 − 1.99i)10-s + (0.802 + 1.39i)11-s − 3.60·13-s − 2.30·14-s + (−0.151 − 0.262i)16-s + (3.80 − 6.58i)17-s + (2.80 − 4.85i)19-s + (−1.65 + 2.86i)20-s + (1.84 − 3.20i)22-s + (−1.5 − 2.59i)23-s + ⋯ |
L(s) = 1 | + (−0.814 − 1.41i)2-s + (−0.825 + 1.43i)4-s + 0.447·5-s + (0.188 − 0.327i)7-s + 1.06·8-s + (−0.364 − 0.630i)10-s + (0.242 + 0.419i)11-s − 1.00·13-s − 0.615·14-s + (−0.0378 − 0.0655i)16-s + (0.922 − 1.59i)17-s + (0.643 − 1.11i)19-s + (−0.369 + 0.639i)20-s + (0.394 − 0.682i)22-s + (−0.312 − 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.112808 - 0.836139i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.112808 - 0.836139i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + 3.60T \) |
good | 2 | \( 1 + (1.15 + 1.99i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.802 - 1.39i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.80 + 6.58i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.80 + 4.85i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.10 + 5.37i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (1.80 + 3.12i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.10 + 8.84i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.21T + 47T^{2} \) |
| 53 | \( 1 - 3.21T + 53T^{2} \) |
| 59 | \( 1 + (5.40 - 9.36i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 - 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.40 + 4.17i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 0.788T + 73T^{2} \) |
| 79 | \( 1 - 5.21T + 79T^{2} \) |
| 83 | \( 1 - 9.21T + 83T^{2} \) |
| 89 | \( 1 + (3.10 + 5.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.19 + 7.26i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21140043790236143054577420641, −9.529776251069142339418033751739, −9.113343386017076619365699633878, −7.75921891865245988950491983430, −7.07878304512902982558008474063, −5.46786814581091082008414050134, −4.37578571209581520864890986887, −3.01556184242093139969566683202, −2.13491309999883799829587654311, −0.64903909413762641751616505569,
1.57469186591340619258495620963, 3.50539217898122236647920480363, 5.22083801248646958759740155185, 5.77434285912283199724715768955, 6.65219663898547700268366944517, 7.74095564126832266571094937208, 8.202558594466820192843259205579, 9.280584799600831065390738957775, 9.829365792666168927700243919955, 10.71459207430285839300473948724