L(s) = 1 | + (−1.09 + 0.634i)2-s + (1.58 + 0.700i)3-s + (−0.194 + 0.337i)4-s + (−0.866 − 0.5i)5-s + (−2.18 + 0.234i)6-s + (4.16 − 2.40i)7-s − 3.03i·8-s + (2.01 + 2.22i)9-s + 1.26·10-s + (−3.25 + 1.88i)11-s + (−0.545 + 0.397i)12-s + (3.09 + 1.85i)13-s + (−3.04 + 5.28i)14-s + (−1.02 − 1.39i)15-s + (1.53 + 2.65i)16-s + 2.36·17-s + ⋯ |
L(s) = 1 | + (−0.777 + 0.448i)2-s + (0.914 + 0.404i)3-s + (−0.0974 + 0.168i)4-s + (−0.387 − 0.223i)5-s + (−0.892 + 0.0958i)6-s + (1.57 − 0.908i)7-s − 1.07i·8-s + (0.672 + 0.740i)9-s + 0.401·10-s + (−0.982 + 0.566i)11-s + (−0.157 + 0.114i)12-s + (0.858 + 0.513i)13-s + (−0.815 + 1.41i)14-s + (−0.263 − 0.361i)15-s + (0.383 + 0.664i)16-s + 0.572·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26580 + 0.608751i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26580 + 0.608751i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.58 - 0.700i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.09 - 1.85i)T \) |
good | 2 | \( 1 + (1.09 - 0.634i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-4.16 + 2.40i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.25 - 1.88i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.36T + 17T^{2} \) |
| 19 | \( 1 + 4.60iT - 19T^{2} \) |
| 23 | \( 1 + (-4.07 + 7.06i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.72 - 4.72i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.31 + 0.756i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 9.70iT - 37T^{2} \) |
| 41 | \( 1 + (-3.95 - 2.28i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.981 + 1.69i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (8.48 - 4.89i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.05T + 53T^{2} \) |
| 59 | \( 1 + (0.839 + 0.484i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.76 - 8.24i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.76 + 1.02i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.78iT - 71T^{2} \) |
| 73 | \( 1 - 1.99iT - 73T^{2} \) |
| 79 | \( 1 + (3.61 + 6.26i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.04 - 1.75i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 17.2iT - 89T^{2} \) |
| 97 | \( 1 + (2.99 - 1.73i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61800400772510556312755450191, −9.823888254432741441432141276576, −8.600526017261435181233524743011, −8.406182690366082830352733317765, −7.54308970464434492549558200590, −6.93229801828585950977894019127, −4.74214757591862120699721969873, −4.46699893843248344838249883525, −3.07398082953193088928919089235, −1.30514963175202502408380672797,
1.26216863718585636745249912273, 2.29448567333412523826339275853, 3.49367042222112343199042105407, 5.10880872553820193501982016700, 5.86976541189051419831518895844, 7.85199107264057582607264494583, 7.910677176840745021631588250398, 8.701931342310324421609310202046, 9.543458625721087010876420658865, 10.63168036169244347623604601716