Properties

Label 2-585-117.103-c1-0-27
Degree $2$
Conductor $585$
Sign $0.00564 - 0.999i$
Analytic cond. $4.67124$
Root an. cond. $2.16130$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 + 0.807i)2-s + (0.0517 + 1.73i)3-s + (0.304 − 0.527i)4-s + (0.866 + 0.5i)5-s + (−1.47 − 2.38i)6-s + (1.67 − 0.966i)7-s − 2.24i·8-s + (−2.99 + 0.179i)9-s − 1.61·10-s + (5.50 − 3.18i)11-s + (0.929 + 0.500i)12-s + (2.60 + 2.49i)13-s + (−1.56 + 2.70i)14-s + (−0.820 + 1.52i)15-s + (2.42 + 4.19i)16-s + 7.37·17-s + ⋯
L(s)  = 1  + (−0.989 + 0.571i)2-s + (0.0298 + 0.999i)3-s + (0.152 − 0.263i)4-s + (0.387 + 0.223i)5-s + (−0.600 − 0.971i)6-s + (0.632 − 0.365i)7-s − 0.794i·8-s + (−0.998 + 0.0596i)9-s − 0.510·10-s + (1.66 − 0.959i)11-s + (0.268 + 0.144i)12-s + (0.722 + 0.691i)13-s + (−0.417 + 0.722i)14-s + (−0.211 + 0.393i)15-s + (0.605 + 1.04i)16-s + 1.78·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00564 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00564 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(585\)    =    \(3^{2} \cdot 5 \cdot 13\)
Sign: $0.00564 - 0.999i$
Analytic conductor: \(4.67124\)
Root analytic conductor: \(2.16130\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{585} (571, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 585,\ (\ :1/2),\ 0.00564 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.777019 + 0.772643i\)
\(L(\frac12)\) \(\approx\) \(0.777019 + 0.772643i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.0517 - 1.73i)T \)
5 \( 1 + (-0.866 - 0.5i)T \)
13 \( 1 + (-2.60 - 2.49i)T \)
good2 \( 1 + (1.39 - 0.807i)T + (1 - 1.73i)T^{2} \)
7 \( 1 + (-1.67 + 0.966i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-5.50 + 3.18i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 - 7.37T + 17T^{2} \)
19 \( 1 - 0.941iT - 19T^{2} \)
23 \( 1 + (-1.21 + 2.11i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (1.01 + 1.76i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (8.79 + 5.07i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + 3.18iT - 37T^{2} \)
41 \( 1 + (3.06 + 1.76i)T + (20.5 + 35.5i)T^{2} \)
43 \( 1 + (-4.69 - 8.13i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-6.88 + 3.97i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + 9.73T + 53T^{2} \)
59 \( 1 + (7.79 + 4.50i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.789 - 1.36i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-0.551 - 0.318i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 10.3iT - 71T^{2} \)
73 \( 1 + 0.468iT - 73T^{2} \)
79 \( 1 + (-1.56 - 2.71i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-3.12 + 1.80i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 - 13.3iT - 89T^{2} \)
97 \( 1 + (6.43 - 3.71i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80562444342508029591858430181, −9.654165621362193454893837753477, −9.261863992657516450169944899425, −8.454043434635402266712977504489, −7.61412263825455800259021033391, −6.40914265737733584159322822212, −5.68576297531395861640629103308, −4.10518097287120149461903209714, −3.50222119430814842917081281553, −1.22756688834463647743084117281, 1.24810211790446895865288612134, 1.73463491300682391467955231072, 3.30586955506801483814285957274, 5.15635203737116295970022088479, 5.93643551754375460403229445125, 7.19475809722965129833568071623, 7.990701050299166656105890274581, 8.917463701793030076068585911715, 9.374477010127709974742816508180, 10.47462425941893810147170042201

Graph of the $Z$-function along the critical line