L(s) = 1 | + (−0.883 + 0.509i)2-s + (−0.597 − 1.62i)3-s + (−0.480 + 0.831i)4-s + (−0.866 − 0.5i)5-s + (1.35 + 1.13i)6-s + (−3.32 + 1.91i)7-s − 3.01i·8-s + (−2.28 + 1.94i)9-s + 1.01·10-s + (−1.97 + 1.14i)11-s + (1.63 + 0.283i)12-s + (3.56 + 0.545i)13-s + (1.95 − 3.38i)14-s + (−0.295 + 1.70i)15-s + (0.578 + 1.00i)16-s + 7.50·17-s + ⋯ |
L(s) = 1 | + (−0.624 + 0.360i)2-s + (−0.344 − 0.938i)3-s + (−0.240 + 0.415i)4-s + (−0.387 − 0.223i)5-s + (0.553 + 0.461i)6-s + (−1.25 + 0.725i)7-s − 1.06i·8-s + (−0.762 + 0.647i)9-s + 0.322·10-s + (−0.596 + 0.344i)11-s + (0.473 + 0.0819i)12-s + (0.988 + 0.151i)13-s + (0.523 − 0.905i)14-s + (−0.0762 + 0.440i)15-s + (0.144 + 0.250i)16-s + 1.82·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.949 + 0.314i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.575839 - 0.0929575i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.575839 - 0.0929575i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.597 + 1.62i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.56 - 0.545i)T \) |
good | 2 | \( 1 + (0.883 - 0.509i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (3.32 - 1.91i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.97 - 1.14i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 7.50T + 17T^{2} \) |
| 19 | \( 1 + 2.31iT - 19T^{2} \) |
| 23 | \( 1 + (-1.68 + 2.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.07 + 7.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.49 + 2.01i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.546iT - 37T^{2} \) |
| 41 | \( 1 + (-6.35 - 3.67i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.826 + 1.43i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.13 + 4.11i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.10T + 53T^{2} \) |
| 59 | \( 1 + (-6.45 - 3.72i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.77 - 10.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.43 + 3.71i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.19iT - 71T^{2} \) |
| 73 | \( 1 + 7.74iT - 73T^{2} \) |
| 79 | \( 1 + (-6.19 - 10.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.81 + 3.35i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.46iT - 89T^{2} \) |
| 97 | \( 1 + (-10.1 + 5.83i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54037822791000210720835903156, −9.523517485149779729284091212281, −8.780477709622335358567048565710, −7.909993127943311419686553582589, −7.27675127198569244402514990858, −6.28166004115476121182158496571, −5.48842641851092194245913292356, −3.81959696112375455982050424397, −2.69412644415228638070351886153, −0.65348570925770940751444196415,
0.844895523004378983565483584652, 3.21140374940184522585971071428, 3.80274068627446568435582322801, 5.37449585580749849420339172067, 5.91275638516258789933333710514, 7.28334550919106136535762182760, 8.388245987282979174431445739204, 9.322411840165098675279856608971, 9.967760907654123883787982422068, 10.64888703903421286620927917285