Properties

Label 2-585-1.1-c5-0-46
Degree $2$
Conductor $585$
Sign $-1$
Analytic cond. $93.8245$
Root an. cond. $9.68630$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 28·4-s − 25·5-s − 168·7-s + 120·8-s + 50·10-s − 52·11-s + 169·13-s + 336·14-s + 656·16-s − 1.32e3·17-s + 1.70e3·19-s + 700·20-s + 104·22-s − 1.85e3·23-s + 625·25-s − 338·26-s + 4.70e3·28-s + 4.25e3·29-s + 7.19e3·31-s − 5.15e3·32-s + 2.64e3·34-s + 4.20e3·35-s − 2.29e3·37-s − 3.40e3·38-s − 3.00e3·40-s + 6.43e3·41-s + ⋯
L(s)  = 1  − 0.353·2-s − 7/8·4-s − 0.447·5-s − 1.29·7-s + 0.662·8-s + 0.158·10-s − 0.129·11-s + 0.277·13-s + 0.458·14-s + 0.640·16-s − 1.10·17-s + 1.08·19-s + 0.391·20-s + 0.0458·22-s − 0.731·23-s + 1/5·25-s − 0.0980·26-s + 1.13·28-s + 0.938·29-s + 1.34·31-s − 0.889·32-s + 0.392·34-s + 0.579·35-s − 0.275·37-s − 0.381·38-s − 0.296·40-s + 0.598·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(585\)    =    \(3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(93.8245\)
Root analytic conductor: \(9.68630\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 585,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p^{2} T \)
13 \( 1 - p^{2} T \)
good2 \( 1 + p T + p^{5} T^{2} \)
7 \( 1 + 24 p T + p^{5} T^{2} \)
11 \( 1 + 52 T + p^{5} T^{2} \)
17 \( 1 + 1322 T + p^{5} T^{2} \)
19 \( 1 - 1700 T + p^{5} T^{2} \)
23 \( 1 + 1856 T + p^{5} T^{2} \)
29 \( 1 - 4250 T + p^{5} T^{2} \)
31 \( 1 - 232 p T + p^{5} T^{2} \)
37 \( 1 + 2298 T + p^{5} T^{2} \)
41 \( 1 - 6438 T + p^{5} T^{2} \)
43 \( 1 - 18956 T + p^{5} T^{2} \)
47 \( 1 - 968 T + p^{5} T^{2} \)
53 \( 1 + 15366 T + p^{5} T^{2} \)
59 \( 1 - 2940 T + p^{5} T^{2} \)
61 \( 1 - 26542 T + p^{5} T^{2} \)
67 \( 1 + 43588 T + p^{5} T^{2} \)
71 \( 1 - 20688 T + p^{5} T^{2} \)
73 \( 1 - 24786 T + p^{5} T^{2} \)
79 \( 1 - 51760 T + p^{5} T^{2} \)
83 \( 1 + 31436 T + p^{5} T^{2} \)
89 \( 1 + 115690 T + p^{5} T^{2} \)
97 \( 1 + 127638 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.506673226390532770332751618181, −8.696963472165771109372160006641, −7.86545331380126429858986281615, −6.83745155263229154568555029610, −5.89087929085790369823351910794, −4.65320660213905323151087318995, −3.80389866012128326586126427219, −2.74248074749843168626481495601, −0.944175572299128921985124368349, 0, 0.944175572299128921985124368349, 2.74248074749843168626481495601, 3.80389866012128326586126427219, 4.65320660213905323151087318995, 5.89087929085790369823351910794, 6.83745155263229154568555029610, 7.86545331380126429858986281615, 8.696963472165771109372160006641, 9.506673226390532770332751618181

Graph of the $Z$-function along the critical line