Properties

Label 2-585-1.1-c1-0-7
Degree $2$
Conductor $585$
Sign $1$
Analytic cond. $4.67124$
Root an. cond. $2.16130$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s + 2·7-s − 3·8-s + 10-s + 4·11-s − 13-s + 2·14-s − 16-s + 4·17-s + 6·19-s − 20-s + 4·22-s + 25-s − 26-s − 2·28-s + 4·29-s − 10·31-s + 5·32-s + 4·34-s + 2·35-s − 2·37-s + 6·38-s − 3·40-s + 6·41-s − 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s + 0.755·7-s − 1.06·8-s + 0.316·10-s + 1.20·11-s − 0.277·13-s + 0.534·14-s − 1/4·16-s + 0.970·17-s + 1.37·19-s − 0.223·20-s + 0.852·22-s + 1/5·25-s − 0.196·26-s − 0.377·28-s + 0.742·29-s − 1.79·31-s + 0.883·32-s + 0.685·34-s + 0.338·35-s − 0.328·37-s + 0.973·38-s − 0.474·40-s + 0.937·41-s − 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(585\)    =    \(3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.67124\)
Root analytic conductor: \(2.16130\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{585} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 585,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.136169645\)
\(L(\frac12)\) \(\approx\) \(2.136169645\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78754913503442851991561141736, −9.606143923072779152442392232211, −9.158186635818496855923068127670, −8.069603374513132812350986247673, −7.01279831140022405844648391421, −5.80203985872581797785224323059, −5.17362861953367702283649965368, −4.13601102912022186614527931542, −3.11999237486850599731326861173, −1.37276923078037774007010116691, 1.37276923078037774007010116691, 3.11999237486850599731326861173, 4.13601102912022186614527931542, 5.17362861953367702283649965368, 5.80203985872581797785224323059, 7.01279831140022405844648391421, 8.069603374513132812350986247673, 9.158186635818496855923068127670, 9.606143923072779152442392232211, 10.78754913503442851991561141736

Graph of the $Z$-function along the critical line