Properties

Label 2-5808-1.1-c1-0-69
Degree $2$
Conductor $5808$
Sign $1$
Analytic cond. $46.3771$
Root an. cond. $6.81007$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.85·5-s + 4.23·7-s + 9-s + 1.76·13-s + 2.85·15-s − 4.61·17-s + 6.09·19-s + 4.23·21-s − 4.23·23-s + 3.14·25-s + 27-s + 4.47·29-s + 8.61·31-s + 12.0·35-s − 8.23·37-s + 1.76·39-s − 0.527·41-s + 0.527·43-s + 2.85·45-s − 1.38·47-s + 10.9·49-s − 4.61·51-s − 13.5·53-s + 6.09·57-s − 8.85·59-s + 0.381·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.27·5-s + 1.60·7-s + 0.333·9-s + 0.489·13-s + 0.736·15-s − 1.12·17-s + 1.39·19-s + 0.924·21-s − 0.883·23-s + 0.629·25-s + 0.192·27-s + 0.830·29-s + 1.54·31-s + 2.04·35-s − 1.35·37-s + 0.282·39-s − 0.0824·41-s + 0.0804·43-s + 0.425·45-s − 0.201·47-s + 1.56·49-s − 0.646·51-s − 1.86·53-s + 0.806·57-s − 1.15·59-s + 0.0489·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5808\)    =    \(2^{4} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(46.3771\)
Root analytic conductor: \(6.81007\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.259129964\)
\(L(\frac12)\) \(\approx\) \(4.259129964\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 2.85T + 5T^{2} \)
7 \( 1 - 4.23T + 7T^{2} \)
13 \( 1 - 1.76T + 13T^{2} \)
17 \( 1 + 4.61T + 17T^{2} \)
19 \( 1 - 6.09T + 19T^{2} \)
23 \( 1 + 4.23T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 - 8.61T + 31T^{2} \)
37 \( 1 + 8.23T + 37T^{2} \)
41 \( 1 + 0.527T + 41T^{2} \)
43 \( 1 - 0.527T + 43T^{2} \)
47 \( 1 + 1.38T + 47T^{2} \)
53 \( 1 + 13.5T + 53T^{2} \)
59 \( 1 + 8.85T + 59T^{2} \)
61 \( 1 - 0.381T + 61T^{2} \)
67 \( 1 - 6.85T + 67T^{2} \)
71 \( 1 - 3.61T + 71T^{2} \)
73 \( 1 - 1.23T + 73T^{2} \)
79 \( 1 - 9.76T + 79T^{2} \)
83 \( 1 - 6.52T + 83T^{2} \)
89 \( 1 - T + 89T^{2} \)
97 \( 1 - 6.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.181182132872386575625230609059, −7.58852183466220987938246228417, −6.59299333708480298433216367895, −6.03253519832929230463042143898, −5.00716835657789161052398499596, −4.73923028091202161496117583029, −3.60818146771917266348490086330, −2.56111781369464597263741278414, −1.85844511111894555186141197849, −1.20503737985211782268765787417, 1.20503737985211782268765787417, 1.85844511111894555186141197849, 2.56111781369464597263741278414, 3.60818146771917266348490086330, 4.73923028091202161496117583029, 5.00716835657789161052398499596, 6.03253519832929230463042143898, 6.59299333708480298433216367895, 7.58852183466220987938246228417, 8.181182132872386575625230609059

Graph of the $Z$-function along the critical line