Properties

Label 2-5808-1.1-c1-0-3
Degree $2$
Conductor $5808$
Sign $1$
Analytic cond. $46.3771$
Root an. cond. $6.81007$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2.61·5-s − 3·7-s + 9-s + 1.76·13-s + 2.61·15-s + 1.61·17-s − 5.85·19-s + 3·21-s − 3.47·23-s + 1.85·25-s − 27-s + 4.47·29-s − 2.85·31-s + 7.85·35-s + 0.236·37-s − 1.76·39-s − 11.9·41-s − 6.23·43-s − 2.61·45-s − 1.61·47-s + 2·49-s − 1.61·51-s − 9.61·53-s + 5.85·57-s − 10.3·59-s + 7.85·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.17·5-s − 1.13·7-s + 0.333·9-s + 0.489·13-s + 0.675·15-s + 0.392·17-s − 1.34·19-s + 0.654·21-s − 0.723·23-s + 0.370·25-s − 0.192·27-s + 0.830·29-s − 0.512·31-s + 1.32·35-s + 0.0388·37-s − 0.282·39-s − 1.86·41-s − 0.950·43-s − 0.390·45-s − 0.236·47-s + 0.285·49-s − 0.226·51-s − 1.32·53-s + 0.775·57-s − 1.34·59-s + 1.00·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5808\)    =    \(2^{4} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(46.3771\)
Root analytic conductor: \(6.81007\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3810078306\)
\(L(\frac12)\) \(\approx\) \(0.3810078306\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 2.61T + 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
13 \( 1 - 1.76T + 13T^{2} \)
17 \( 1 - 1.61T + 17T^{2} \)
19 \( 1 + 5.85T + 19T^{2} \)
23 \( 1 + 3.47T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 2.85T + 31T^{2} \)
37 \( 1 - 0.236T + 37T^{2} \)
41 \( 1 + 11.9T + 41T^{2} \)
43 \( 1 + 6.23T + 43T^{2} \)
47 \( 1 + 1.61T + 47T^{2} \)
53 \( 1 + 9.61T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 - 7.85T + 61T^{2} \)
67 \( 1 - 9.56T + 67T^{2} \)
71 \( 1 - 5.56T + 71T^{2} \)
73 \( 1 + 3.23T + 73T^{2} \)
79 \( 1 + 9.47T + 79T^{2} \)
83 \( 1 + 0.708T + 83T^{2} \)
89 \( 1 - 0.527T + 89T^{2} \)
97 \( 1 + 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.227677073301440636778587645486, −7.30145075560709680016258265956, −6.56252347741541329568994263668, −6.21814035549411703469023263445, −5.20806012214441834281969011902, −4.35266707509660258513395436549, −3.69104202450473518827236482306, −3.07775665047410773766177408364, −1.74000988766853428659862717657, −0.32801788998822681180893444069, 0.32801788998822681180893444069, 1.74000988766853428659862717657, 3.07775665047410773766177408364, 3.69104202450473518827236482306, 4.35266707509660258513395436549, 5.20806012214441834281969011902, 6.21814035549411703469023263445, 6.56252347741541329568994263668, 7.30145075560709680016258265956, 8.227677073301440636778587645486

Graph of the $Z$-function along the critical line