Properties

Label 2-5800-1.1-c1-0-109
Degree $2$
Conductor $5800$
Sign $-1$
Analytic cond. $46.3132$
Root an. cond. $6.80538$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.47·3-s − 1.11·7-s − 0.830·9-s − 2.22·11-s − 1.47·13-s + 4.06·17-s + 5.51·19-s − 1.64·21-s − 1.24·23-s − 5.64·27-s − 29-s + 1.83·31-s − 3.28·33-s − 1.05·37-s − 2.16·39-s − 4.22·41-s − 7.83·43-s − 2.71·47-s − 5.75·49-s + 5.98·51-s − 9.34·53-s + 8.12·57-s + 0.904·59-s + 13.2·61-s + 0.926·63-s − 1.43·67-s − 1.83·69-s + ⋯
L(s)  = 1  + 0.850·3-s − 0.421·7-s − 0.276·9-s − 0.672·11-s − 0.408·13-s + 0.984·17-s + 1.26·19-s − 0.358·21-s − 0.259·23-s − 1.08·27-s − 0.185·29-s + 0.328·31-s − 0.571·33-s − 0.173·37-s − 0.347·39-s − 0.660·41-s − 1.19·43-s − 0.396·47-s − 0.822·49-s + 0.837·51-s − 1.28·53-s + 1.07·57-s + 0.117·59-s + 1.69·61-s + 0.116·63-s − 0.174·67-s − 0.220·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5800\)    =    \(2^{3} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(46.3132\)
Root analytic conductor: \(6.80538\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 - 1.47T + 3T^{2} \)
7 \( 1 + 1.11T + 7T^{2} \)
11 \( 1 + 2.22T + 11T^{2} \)
13 \( 1 + 1.47T + 13T^{2} \)
17 \( 1 - 4.06T + 17T^{2} \)
19 \( 1 - 5.51T + 19T^{2} \)
23 \( 1 + 1.24T + 23T^{2} \)
31 \( 1 - 1.83T + 31T^{2} \)
37 \( 1 + 1.05T + 37T^{2} \)
41 \( 1 + 4.22T + 41T^{2} \)
43 \( 1 + 7.83T + 43T^{2} \)
47 \( 1 + 2.71T + 47T^{2} \)
53 \( 1 + 9.34T + 53T^{2} \)
59 \( 1 - 0.904T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 + 1.43T + 67T^{2} \)
71 \( 1 - 6.56T + 71T^{2} \)
73 \( 1 + 11.7T + 73T^{2} \)
79 \( 1 - 8.98T + 79T^{2} \)
83 \( 1 + 6.94T + 83T^{2} \)
89 \( 1 + 3.05T + 89T^{2} \)
97 \( 1 - 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.941382828154460178518240569631, −7.21377999081794741909835002105, −6.39360646014050570864186769436, −5.45079686099396517277262396832, −5.02281687951258769320880715368, −3.75615631073097299164817546329, −3.17129029307589156238009323320, −2.57474627009798986336706543904, −1.46630934825438658559288289812, 0, 1.46630934825438658559288289812, 2.57474627009798986336706543904, 3.17129029307589156238009323320, 3.75615631073097299164817546329, 5.02281687951258769320880715368, 5.45079686099396517277262396832, 6.39360646014050570864186769436, 7.21377999081794741909835002105, 7.941382828154460178518240569631

Graph of the $Z$-function along the critical line