Properties

Label 2-57e2-1.1-c1-0-84
Degree $2$
Conductor $3249$
Sign $-1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.347·2-s − 1.87·4-s + 1.34·5-s − 0.652·7-s + 1.34·8-s − 0.467·10-s − 3.94·11-s − 1.69·13-s + 0.226·14-s + 3.29·16-s + 3.83·17-s − 2.53·20-s + 1.36·22-s + 3.63·23-s − 3.18·25-s + 0.588·26-s + 1.22·28-s + 10.5·29-s − 6.46·31-s − 3.83·32-s − 1.33·34-s − 0.879·35-s + 2.94·37-s + 1.81·40-s − 1.50·41-s − 9.36·43-s + 7.41·44-s + ⋯
L(s)  = 1  − 0.245·2-s − 0.939·4-s + 0.602·5-s − 0.246·7-s + 0.476·8-s − 0.147·10-s − 1.18·11-s − 0.469·13-s + 0.0605·14-s + 0.822·16-s + 0.930·17-s − 0.566·20-s + 0.291·22-s + 0.758·23-s − 0.636·25-s + 0.115·26-s + 0.231·28-s + 1.95·29-s − 1.16·31-s − 0.678·32-s − 0.228·34-s − 0.148·35-s + 0.483·37-s + 0.287·40-s − 0.235·41-s − 1.42·43-s + 1.11·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 0.347T + 2T^{2} \)
5 \( 1 - 1.34T + 5T^{2} \)
7 \( 1 + 0.652T + 7T^{2} \)
11 \( 1 + 3.94T + 11T^{2} \)
13 \( 1 + 1.69T + 13T^{2} \)
17 \( 1 - 3.83T + 17T^{2} \)
23 \( 1 - 3.63T + 23T^{2} \)
29 \( 1 - 10.5T + 29T^{2} \)
31 \( 1 + 6.46T + 31T^{2} \)
37 \( 1 - 2.94T + 37T^{2} \)
41 \( 1 + 1.50T + 41T^{2} \)
43 \( 1 + 9.36T + 43T^{2} \)
47 \( 1 - 12.7T + 47T^{2} \)
53 \( 1 + 10.8T + 53T^{2} \)
59 \( 1 + 2.77T + 59T^{2} \)
61 \( 1 - 4.31T + 61T^{2} \)
67 \( 1 + 7.88T + 67T^{2} \)
71 \( 1 + 5.36T + 71T^{2} \)
73 \( 1 - 5.86T + 73T^{2} \)
79 \( 1 - 3.12T + 79T^{2} \)
83 \( 1 - 4.50T + 83T^{2} \)
89 \( 1 + 11.1T + 89T^{2} \)
97 \( 1 + 6.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.214776647082487027981991033791, −7.77968641421993270756447986777, −6.84936514582599691019255512052, −5.81623637873560475833817105724, −5.21294259401596794708398830292, −4.58772449228693406856850086508, −3.43194791892448772255262500433, −2.60738418659047733714969018800, −1.31732355926853024544591190672, 0, 1.31732355926853024544591190672, 2.60738418659047733714969018800, 3.43194791892448772255262500433, 4.58772449228693406856850086508, 5.21294259401596794708398830292, 5.81623637873560475833817105724, 6.84936514582599691019255512052, 7.77968641421993270756447986777, 8.214776647082487027981991033791

Graph of the $Z$-function along the critical line