Properties

Label 2-57e2-1.1-c1-0-73
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.08·2-s + 2.34·4-s + 0.724·5-s + 1.22·7-s + 0.724·8-s + 1.50·10-s + 1.83·11-s + 3.69·13-s + 2.55·14-s − 3.18·16-s + 6.64·17-s + 1.69·20-s + 3.82·22-s − 3.19·23-s − 4.47·25-s + 7.70·26-s + 2.87·28-s + 5.02·29-s + 2.81·31-s − 8.08·32-s + 13.8·34-s + 0.888·35-s + 7.41·37-s + 0.524·40-s − 10.0·41-s − 0.0641·43-s + 4.30·44-s + ⋯
L(s)  = 1  + 1.47·2-s + 1.17·4-s + 0.323·5-s + 0.463·7-s + 0.256·8-s + 0.477·10-s + 0.552·11-s + 1.02·13-s + 0.683·14-s − 0.796·16-s + 1.61·17-s + 0.380·20-s + 0.815·22-s − 0.666·23-s − 0.895·25-s + 1.51·26-s + 0.544·28-s + 0.933·29-s + 0.505·31-s − 1.42·32-s + 2.37·34-s + 0.150·35-s + 1.21·37-s + 0.0829·40-s − 1.57·41-s − 0.00978·43-s + 0.648·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.161263541\)
\(L(\frac12)\) \(\approx\) \(5.161263541\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 2.08T + 2T^{2} \)
5 \( 1 - 0.724T + 5T^{2} \)
7 \( 1 - 1.22T + 7T^{2} \)
11 \( 1 - 1.83T + 11T^{2} \)
13 \( 1 - 3.69T + 13T^{2} \)
17 \( 1 - 6.64T + 17T^{2} \)
23 \( 1 + 3.19T + 23T^{2} \)
29 \( 1 - 5.02T + 29T^{2} \)
31 \( 1 - 2.81T + 31T^{2} \)
37 \( 1 - 7.41T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 + 0.0641T + 43T^{2} \)
47 \( 1 + 9.67T + 47T^{2} \)
53 \( 1 - 4.80T + 53T^{2} \)
59 \( 1 - 7.58T + 59T^{2} \)
61 \( 1 - 4.17T + 61T^{2} \)
67 \( 1 - 7.51T + 67T^{2} \)
71 \( 1 - 14.8T + 71T^{2} \)
73 \( 1 - 3.90T + 73T^{2} \)
79 \( 1 - 7.61T + 79T^{2} \)
83 \( 1 - 12.3T + 83T^{2} \)
89 \( 1 + 13.6T + 89T^{2} \)
97 \( 1 - 4.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.388799271297637111255401850291, −7.963075048188142477674139081571, −6.70454232798717807746016950550, −6.24816854407403070228145503722, −5.48333671865334751660796287417, −4.88234331131211297460057313339, −3.86673614355186521370189387729, −3.44071474527569734773622940819, −2.29678294646608638379459107043, −1.21502914976792290507860046469, 1.21502914976792290507860046469, 2.29678294646608638379459107043, 3.44071474527569734773622940819, 3.86673614355186521370189387729, 4.88234331131211297460057313339, 5.48333671865334751660796287417, 6.24816854407403070228145503722, 6.70454232798717807746016950550, 7.963075048188142477674139081571, 8.388799271297637111255401850291

Graph of the $Z$-function along the critical line