| L(s) = 1 | − 2.33·2-s + 3.44·4-s − 1.04·5-s − 3.44·7-s − 3.38·8-s + 2.44·10-s + 5.71·11-s − 13-s + 8.05·14-s + 1.00·16-s + 2.09·17-s − 3.61·20-s − 13.3·22-s + 3.61·23-s − 3.89·25-s + 2.33·26-s − 11.8·28-s − 7.23·29-s − 9.44·31-s + 4.43·32-s − 4.89·34-s + 3.61·35-s + 3.89·37-s + 3.55·40-s − 9.33·41-s + 6.34·43-s + 19.7·44-s + ⋯ |
| L(s) = 1 | − 1.65·2-s + 1.72·4-s − 0.469·5-s − 1.30·7-s − 1.19·8-s + 0.774·10-s + 1.72·11-s − 0.277·13-s + 2.15·14-s + 0.250·16-s + 0.508·17-s − 0.809·20-s − 2.84·22-s + 0.754·23-s − 0.779·25-s + 0.457·26-s − 2.24·28-s − 1.34·29-s − 1.69·31-s + 0.783·32-s − 0.840·34-s + 0.611·35-s + 0.640·37-s + 0.561·40-s − 1.45·41-s + 0.968·43-s + 2.97·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + 2.33T + 2T^{2} \) |
| 5 | \( 1 + 1.04T + 5T^{2} \) |
| 7 | \( 1 + 3.44T + 7T^{2} \) |
| 11 | \( 1 - 5.71T + 11T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 - 2.09T + 17T^{2} \) |
| 23 | \( 1 - 3.61T + 23T^{2} \) |
| 29 | \( 1 + 7.23T + 29T^{2} \) |
| 31 | \( 1 + 9.44T + 31T^{2} \) |
| 37 | \( 1 - 3.89T + 37T^{2} \) |
| 41 | \( 1 + 9.33T + 41T^{2} \) |
| 43 | \( 1 - 6.34T + 43T^{2} \) |
| 47 | \( 1 - 9.33T + 47T^{2} \) |
| 53 | \( 1 - 1.04T + 53T^{2} \) |
| 59 | \( 1 - 7.81T + 59T^{2} \) |
| 61 | \( 1 - 5T + 61T^{2} \) |
| 67 | \( 1 - 0.348T + 67T^{2} \) |
| 71 | \( 1 - 7.23T + 71T^{2} \) |
| 73 | \( 1 - 5T + 73T^{2} \) |
| 79 | \( 1 - 0.348T + 79T^{2} \) |
| 83 | \( 1 + 11.4T + 83T^{2} \) |
| 89 | \( 1 + 5.24T + 89T^{2} \) |
| 97 | \( 1 - 3.10T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.515635563867456352421567122160, −7.45360730363417127352229381540, −7.11460790461796029403958536099, −6.40218271202043303142772829342, −5.56021251639845545955389135685, −4.00396624578623320722566963733, −3.46998831230686250065441574574, −2.21591696277018087891970251047, −1.11595173876152002841799437890, 0,
1.11595173876152002841799437890, 2.21591696277018087891970251047, 3.46998831230686250065441574574, 4.00396624578623320722566963733, 5.56021251639845545955389135685, 6.40218271202043303142772829342, 7.11460790461796029403958536099, 7.45360730363417127352229381540, 8.515635563867456352421567122160