Properties

Label 2-57e2-1.1-c1-0-30
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35·2-s + 3.53·4-s − 3.60·5-s + 0.184·7-s − 3.60·8-s + 8.47·10-s + 3.16·11-s + 6.06·13-s − 0.434·14-s + 1.41·16-s + 3.31·17-s − 12.7·20-s − 7.45·22-s − 4.42·23-s + 7.98·25-s − 14.2·26-s + 0.652·28-s + 7.58·29-s + 7.41·31-s + 3.88·32-s − 7.80·34-s − 0.665·35-s + 1.77·37-s + 12.9·40-s − 2.21·41-s + 6.75·43-s + 11.1·44-s + ⋯
L(s)  = 1  − 1.66·2-s + 1.76·4-s − 1.61·5-s + 0.0698·7-s − 1.27·8-s + 2.68·10-s + 0.955·11-s + 1.68·13-s − 0.116·14-s + 0.352·16-s + 0.805·17-s − 2.84·20-s − 1.58·22-s − 0.921·23-s + 1.59·25-s − 2.79·26-s + 0.123·28-s + 1.40·29-s + 1.33·31-s + 0.687·32-s − 1.33·34-s − 0.112·35-s + 0.291·37-s + 2.05·40-s − 0.346·41-s + 1.03·43-s + 1.68·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6893579646\)
\(L(\frac12)\) \(\approx\) \(0.6893579646\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 2.35T + 2T^{2} \)
5 \( 1 + 3.60T + 5T^{2} \)
7 \( 1 - 0.184T + 7T^{2} \)
11 \( 1 - 3.16T + 11T^{2} \)
13 \( 1 - 6.06T + 13T^{2} \)
17 \( 1 - 3.31T + 17T^{2} \)
23 \( 1 + 4.42T + 23T^{2} \)
29 \( 1 - 7.58T + 29T^{2} \)
31 \( 1 - 7.41T + 31T^{2} \)
37 \( 1 - 1.77T + 37T^{2} \)
41 \( 1 + 2.21T + 41T^{2} \)
43 \( 1 - 6.75T + 43T^{2} \)
47 \( 1 + 4.80T + 47T^{2} \)
53 \( 1 - 0.150T + 53T^{2} \)
59 \( 1 - 7.15T + 59T^{2} \)
61 \( 1 + 5.92T + 61T^{2} \)
67 \( 1 + 1.38T + 67T^{2} \)
71 \( 1 + 9.02T + 71T^{2} \)
73 \( 1 + 8.70T + 73T^{2} \)
79 \( 1 - 2.87T + 79T^{2} \)
83 \( 1 - 7.30T + 83T^{2} \)
89 \( 1 - 7.33T + 89T^{2} \)
97 \( 1 - 0.837T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.482067043854657774037695332046, −8.128880472882712110956858321677, −7.55193859995257070380371596853, −6.61885261418033716886467982372, −6.14223668739252574295931972557, −4.55989231069890189171321414529, −3.82707746950328978179964741885, −2.98133672115075024837743682360, −1.43639638800924185331670376689, −0.71670587943041681662619772859, 0.71670587943041681662619772859, 1.43639638800924185331670376689, 2.98133672115075024837743682360, 3.82707746950328978179964741885, 4.55989231069890189171321414529, 6.14223668739252574295931972557, 6.61885261418033716886467982372, 7.55193859995257070380371596853, 8.128880472882712110956858321677, 8.482067043854657774037695332046

Graph of the $Z$-function along the critical line