Properties

Label 2-57e2-1.1-c1-0-28
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·2-s − 1.87·4-s + 1.34·5-s − 0.652·7-s − 1.34·8-s + 0.467·10-s − 3.94·11-s + 1.69·13-s − 0.226·14-s + 3.29·16-s + 3.83·17-s − 2.53·20-s − 1.36·22-s + 3.63·23-s − 3.18·25-s + 0.588·26-s + 1.22·28-s − 10.5·29-s + 6.46·31-s + 3.83·32-s + 1.33·34-s − 0.879·35-s − 2.94·37-s − 1.81·40-s + 1.50·41-s − 9.36·43-s + 7.41·44-s + ⋯
L(s)  = 1  + 0.245·2-s − 0.939·4-s + 0.602·5-s − 0.246·7-s − 0.476·8-s + 0.147·10-s − 1.18·11-s + 0.469·13-s − 0.0605·14-s + 0.822·16-s + 0.930·17-s − 0.566·20-s − 0.291·22-s + 0.758·23-s − 0.636·25-s + 0.115·26-s + 0.231·28-s − 1.95·29-s + 1.16·31-s + 0.678·32-s + 0.228·34-s − 0.148·35-s − 0.483·37-s − 0.287·40-s + 0.235·41-s − 1.42·43-s + 1.11·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.529918007\)
\(L(\frac12)\) \(\approx\) \(1.529918007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 0.347T + 2T^{2} \)
5 \( 1 - 1.34T + 5T^{2} \)
7 \( 1 + 0.652T + 7T^{2} \)
11 \( 1 + 3.94T + 11T^{2} \)
13 \( 1 - 1.69T + 13T^{2} \)
17 \( 1 - 3.83T + 17T^{2} \)
23 \( 1 - 3.63T + 23T^{2} \)
29 \( 1 + 10.5T + 29T^{2} \)
31 \( 1 - 6.46T + 31T^{2} \)
37 \( 1 + 2.94T + 37T^{2} \)
41 \( 1 - 1.50T + 41T^{2} \)
43 \( 1 + 9.36T + 43T^{2} \)
47 \( 1 - 12.7T + 47T^{2} \)
53 \( 1 - 10.8T + 53T^{2} \)
59 \( 1 - 2.77T + 59T^{2} \)
61 \( 1 - 4.31T + 61T^{2} \)
67 \( 1 - 7.88T + 67T^{2} \)
71 \( 1 - 5.36T + 71T^{2} \)
73 \( 1 - 5.86T + 73T^{2} \)
79 \( 1 + 3.12T + 79T^{2} \)
83 \( 1 - 4.50T + 83T^{2} \)
89 \( 1 - 11.1T + 89T^{2} \)
97 \( 1 - 6.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.661528088526571561060020028086, −8.001754309133772974814996416618, −7.23789188937206170387185495946, −6.12585299449138411813521988457, −5.47991933697402943491407553552, −5.03598891302171777081717378595, −3.89008569540406338779097759464, −3.21557383356775530205009893249, −2.11402975531072306752974516724, −0.71400243975855102173931326550, 0.71400243975855102173931326550, 2.11402975531072306752974516724, 3.21557383356775530205009893249, 3.89008569540406338779097759464, 5.03598891302171777081717378595, 5.47991933697402943491407553552, 6.12585299449138411813521988457, 7.23789188937206170387185495946, 8.001754309133772974814996416618, 8.661528088526571561060020028086

Graph of the $Z$-function along the critical line