Properties

Label 2-57e2-1.1-c1-0-22
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.741·2-s − 1.44·4-s − 3.30·5-s + 1.44·7-s + 2.55·8-s + 2.44·10-s + 1.81·11-s + 13-s − 1.07·14-s + 1.00·16-s + 6.60·17-s + 4.78·20-s − 1.34·22-s − 4.78·23-s + 5.89·25-s − 0.741·26-s − 2.10·28-s − 9.57·29-s + 4.55·31-s − 5.86·32-s − 4.89·34-s − 4.78·35-s + 5.89·37-s − 8.44·40-s − 2.96·41-s − 8.34·43-s − 2.63·44-s + ⋯
L(s)  = 1  − 0.524·2-s − 0.724·4-s − 1.47·5-s + 0.547·7-s + 0.904·8-s + 0.774·10-s + 0.547·11-s + 0.277·13-s − 0.287·14-s + 0.250·16-s + 1.60·17-s + 1.07·20-s − 0.287·22-s − 0.997·23-s + 1.17·25-s − 0.145·26-s − 0.397·28-s − 1.77·29-s + 0.817·31-s − 1.03·32-s − 0.840·34-s − 0.808·35-s + 0.969·37-s − 1.33·40-s − 0.463·41-s − 1.27·43-s − 0.397·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8114075243\)
\(L(\frac12)\) \(\approx\) \(0.8114075243\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 0.741T + 2T^{2} \)
5 \( 1 + 3.30T + 5T^{2} \)
7 \( 1 - 1.44T + 7T^{2} \)
11 \( 1 - 1.81T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 - 6.60T + 17T^{2} \)
23 \( 1 + 4.78T + 23T^{2} \)
29 \( 1 + 9.57T + 29T^{2} \)
31 \( 1 - 4.55T + 31T^{2} \)
37 \( 1 - 5.89T + 37T^{2} \)
41 \( 1 + 2.96T + 41T^{2} \)
43 \( 1 + 8.34T + 43T^{2} \)
47 \( 1 + 2.96T + 47T^{2} \)
53 \( 1 + 3.30T + 53T^{2} \)
59 \( 1 + 8.42T + 59T^{2} \)
61 \( 1 - 5T + 61T^{2} \)
67 \( 1 - 14.3T + 67T^{2} \)
71 \( 1 - 9.57T + 71T^{2} \)
73 \( 1 - 5T + 73T^{2} \)
79 \( 1 - 14.3T + 79T^{2} \)
83 \( 1 + 3.63T + 83T^{2} \)
89 \( 1 - 16.5T + 89T^{2} \)
97 \( 1 + 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.334296885532885557619226161923, −8.022461046716400856997926302319, −7.61884064847101875166303178430, −6.57305587889787172224618017606, −5.44790387524606520473118604910, −4.70659832773773087372875652171, −3.83928013179181337966596164506, −3.45592840940633254991180364567, −1.67896800849665446900339700592, −0.61786061552046168591442608637, 0.61786061552046168591442608637, 1.67896800849665446900339700592, 3.45592840940633254991180364567, 3.83928013179181337966596164506, 4.70659832773773087372875652171, 5.44790387524606520473118604910, 6.57305587889787172224618017606, 7.61884064847101875166303178430, 8.022461046716400856997926302319, 8.334296885532885557619226161923

Graph of the $Z$-function along the critical line