Properties

Label 2-57e2-1.1-c1-0-15
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·2-s + 1.53·4-s − 0.879·5-s − 2.87·7-s + 0.879·8-s + 1.65·10-s + 1.83·11-s − 2.75·13-s + 5.41·14-s − 4.71·16-s + 7.10·17-s − 1.34·20-s − 3.45·22-s − 6.59·23-s − 4.22·25-s + 5.18·26-s − 4.41·28-s + 3.12·29-s + 7.65·31-s + 7.10·32-s − 13.3·34-s + 2.53·35-s + 2.83·37-s − 0.773·40-s − 3.98·41-s − 11.4·43-s + 2.81·44-s + ⋯
L(s)  = 1  − 1.32·2-s + 0.766·4-s − 0.393·5-s − 1.08·7-s + 0.310·8-s + 0.522·10-s + 0.554·11-s − 0.765·13-s + 1.44·14-s − 1.17·16-s + 1.72·17-s − 0.301·20-s − 0.736·22-s − 1.37·23-s − 0.845·25-s + 1.01·26-s − 0.833·28-s + 0.580·29-s + 1.37·31-s + 1.25·32-s − 2.29·34-s + 0.428·35-s + 0.466·37-s − 0.122·40-s − 0.622·41-s − 1.74·43-s + 0.424·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5055071220\)
\(L(\frac12)\) \(\approx\) \(0.5055071220\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 1.87T + 2T^{2} \)
5 \( 1 + 0.879T + 5T^{2} \)
7 \( 1 + 2.87T + 7T^{2} \)
11 \( 1 - 1.83T + 11T^{2} \)
13 \( 1 + 2.75T + 13T^{2} \)
17 \( 1 - 7.10T + 17T^{2} \)
23 \( 1 + 6.59T + 23T^{2} \)
29 \( 1 - 3.12T + 29T^{2} \)
31 \( 1 - 7.65T + 31T^{2} \)
37 \( 1 - 2.83T + 37T^{2} \)
41 \( 1 + 3.98T + 41T^{2} \)
43 \( 1 + 11.4T + 43T^{2} \)
47 \( 1 + 2.20T + 47T^{2} \)
53 \( 1 + 2.70T + 53T^{2} \)
59 \( 1 - 8.41T + 59T^{2} \)
61 \( 1 - 0.615T + 61T^{2} \)
67 \( 1 + 3.67T + 67T^{2} \)
71 \( 1 - 7.45T + 71T^{2} \)
73 \( 1 + 10.0T + 73T^{2} \)
79 \( 1 - 1.61T + 79T^{2} \)
83 \( 1 + 0.985T + 83T^{2} \)
89 \( 1 + 17.0T + 89T^{2} \)
97 \( 1 + 5.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.525203823057253548884686895379, −8.086292985959810148956976333675, −7.37543056755714803278995892556, −6.64403946817044281969703312610, −5.90722834186597376930563851335, −4.75846680606184486605457457531, −3.80270961804269768889853734081, −2.93978745038615739041312828548, −1.70998649748166123457238547730, −0.52372169175375729920119235283, 0.52372169175375729920119235283, 1.70998649748166123457238547730, 2.93978745038615739041312828548, 3.80270961804269768889853734081, 4.75846680606184486605457457531, 5.90722834186597376930563851335, 6.64403946817044281969703312610, 7.37543056755714803278995892556, 8.086292985959810148956976333675, 8.525203823057253548884686895379

Graph of the $Z$-function along the critical line