Properties

Label 2-57e2-1.1-c1-0-120
Degree $2$
Conductor $3249$
Sign $-1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.87·2-s + 1.53·4-s − 0.879·5-s − 2.87·7-s − 0.879·8-s − 1.65·10-s + 1.83·11-s + 2.75·13-s − 5.41·14-s − 4.71·16-s + 7.10·17-s − 1.34·20-s + 3.45·22-s − 6.59·23-s − 4.22·25-s + 5.18·26-s − 4.41·28-s − 3.12·29-s − 7.65·31-s − 7.10·32-s + 13.3·34-s + 2.53·35-s − 2.83·37-s + 0.773·40-s + 3.98·41-s − 11.4·43-s + 2.81·44-s + ⋯
L(s)  = 1  + 1.32·2-s + 0.766·4-s − 0.393·5-s − 1.08·7-s − 0.310·8-s − 0.522·10-s + 0.554·11-s + 0.765·13-s − 1.44·14-s − 1.17·16-s + 1.72·17-s − 0.301·20-s + 0.736·22-s − 1.37·23-s − 0.845·25-s + 1.01·26-s − 0.833·28-s − 0.580·29-s − 1.37·31-s − 1.25·32-s + 2.29·34-s + 0.428·35-s − 0.466·37-s + 0.122·40-s + 0.622·41-s − 1.74·43-s + 0.424·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 1.87T + 2T^{2} \)
5 \( 1 + 0.879T + 5T^{2} \)
7 \( 1 + 2.87T + 7T^{2} \)
11 \( 1 - 1.83T + 11T^{2} \)
13 \( 1 - 2.75T + 13T^{2} \)
17 \( 1 - 7.10T + 17T^{2} \)
23 \( 1 + 6.59T + 23T^{2} \)
29 \( 1 + 3.12T + 29T^{2} \)
31 \( 1 + 7.65T + 31T^{2} \)
37 \( 1 + 2.83T + 37T^{2} \)
41 \( 1 - 3.98T + 41T^{2} \)
43 \( 1 + 11.4T + 43T^{2} \)
47 \( 1 + 2.20T + 47T^{2} \)
53 \( 1 - 2.70T + 53T^{2} \)
59 \( 1 + 8.41T + 59T^{2} \)
61 \( 1 - 0.615T + 61T^{2} \)
67 \( 1 - 3.67T + 67T^{2} \)
71 \( 1 + 7.45T + 71T^{2} \)
73 \( 1 + 10.0T + 73T^{2} \)
79 \( 1 + 1.61T + 79T^{2} \)
83 \( 1 + 0.985T + 83T^{2} \)
89 \( 1 - 17.0T + 89T^{2} \)
97 \( 1 - 5.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144567909702436092444751057699, −7.35638243871927594212006630445, −6.44017027180021526906221182980, −5.91098513976299248192409923333, −5.31962552122786012169430928551, −4.11216525929314633633558445792, −3.61668295902895967167642784199, −3.14267069759827921303083271529, −1.72983484977911585945332139552, 0, 1.72983484977911585945332139552, 3.14267069759827921303083271529, 3.61668295902895967167642784199, 4.11216525929314633633558445792, 5.31962552122786012169430928551, 5.91098513976299248192409923333, 6.44017027180021526906221182980, 7.35638243871927594212006630445, 8.144567909702436092444751057699

Graph of the $Z$-function along the critical line