Properties

Label 2-57e2-1.1-c1-0-115
Degree $2$
Conductor $3249$
Sign $-1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.53·2-s + 0.347·4-s + 2.53·5-s + 0.532·7-s + 2.53·8-s − 3.87·10-s + 5.10·11-s − 4.06·13-s − 0.815·14-s − 4.57·16-s − 1.94·17-s + 0.879·20-s − 7.82·22-s − 3.04·23-s + 1.41·25-s + 6.22·26-s + 0.184·28-s + 1.61·29-s − 9.87·31-s + 1.94·32-s + 2.97·34-s + 1.34·35-s − 6.10·37-s + 6.41·40-s − 8.47·41-s − 0.177·43-s + 1.77·44-s + ⋯
L(s)  = 1  − 1.08·2-s + 0.173·4-s + 1.13·5-s + 0.201·7-s + 0.895·8-s − 1.22·10-s + 1.53·11-s − 1.12·13-s − 0.217·14-s − 1.14·16-s − 0.471·17-s + 0.196·20-s − 1.66·22-s − 0.634·23-s + 0.282·25-s + 1.22·26-s + 0.0349·28-s + 0.299·29-s − 1.77·31-s + 0.343·32-s + 0.510·34-s + 0.227·35-s − 1.00·37-s + 1.01·40-s − 1.32·41-s − 0.0270·43-s + 0.267·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 1.53T + 2T^{2} \)
5 \( 1 - 2.53T + 5T^{2} \)
7 \( 1 - 0.532T + 7T^{2} \)
11 \( 1 - 5.10T + 11T^{2} \)
13 \( 1 + 4.06T + 13T^{2} \)
17 \( 1 + 1.94T + 17T^{2} \)
23 \( 1 + 3.04T + 23T^{2} \)
29 \( 1 - 1.61T + 29T^{2} \)
31 \( 1 + 9.87T + 31T^{2} \)
37 \( 1 + 6.10T + 37T^{2} \)
41 \( 1 + 8.47T + 41T^{2} \)
43 \( 1 + 0.177T + 43T^{2} \)
47 \( 1 + 7.55T + 47T^{2} \)
53 \( 1 + 9.90T + 53T^{2} \)
59 \( 1 + 3.81T + 59T^{2} \)
61 \( 1 + 13.9T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 - 3.82T + 71T^{2} \)
73 \( 1 + 1.85T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + 5.92T + 89T^{2} \)
97 \( 1 - 6.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.506996020198002645409807587444, −7.63793549965197998537754334468, −6.85889370398146346731049660866, −6.26512425040189257133025120543, −5.19799319678359522462529339087, −4.52840512182951634725834195512, −3.43230376647954394294593654836, −1.91468048993288781989718370482, −1.62635921764511656976939906935, 0, 1.62635921764511656976939906935, 1.91468048993288781989718370482, 3.43230376647954394294593654836, 4.52840512182951634725834195512, 5.19799319678359522462529339087, 6.26512425040189257133025120543, 6.85889370398146346731049660866, 7.63793549965197998537754334468, 8.506996020198002645409807587444

Graph of the $Z$-function along the critical line