Properties

Label 2-57e2-1.1-c1-0-11
Degree $2$
Conductor $3249$
Sign $1$
Analytic cond. $25.9433$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.45·2-s + 0.120·4-s − 2.73·5-s − 4.41·7-s − 2.73·8-s − 3.98·10-s − 3.68·11-s − 0.758·13-s − 6.42·14-s − 4.22·16-s + 6.15·17-s − 0.330·20-s − 5.36·22-s − 0.505·23-s + 2.49·25-s − 1.10·26-s − 0.532·28-s − 3.18·29-s + 1.77·31-s − 0.681·32-s + 8.96·34-s + 12.0·35-s + 2.81·37-s + 7.49·40-s − 11.8·41-s + 2.30·43-s − 0.444·44-s + ⋯
L(s)  = 1  + 1.02·2-s + 0.0603·4-s − 1.22·5-s − 1.66·7-s − 0.967·8-s − 1.26·10-s − 1.11·11-s − 0.210·13-s − 1.71·14-s − 1.05·16-s + 1.49·17-s − 0.0738·20-s − 1.14·22-s − 0.105·23-s + 0.498·25-s − 0.216·26-s − 0.100·28-s − 0.590·29-s + 0.318·31-s − 0.120·32-s + 1.53·34-s + 2.04·35-s + 0.462·37-s + 1.18·40-s − 1.84·41-s + 0.351·43-s − 0.0670·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3249\)    =    \(3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(25.9433\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3249,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8188949287\)
\(L(\frac12)\) \(\approx\) \(0.8188949287\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 1.45T + 2T^{2} \)
5 \( 1 + 2.73T + 5T^{2} \)
7 \( 1 + 4.41T + 7T^{2} \)
11 \( 1 + 3.68T + 11T^{2} \)
13 \( 1 + 0.758T + 13T^{2} \)
17 \( 1 - 6.15T + 17T^{2} \)
23 \( 1 + 0.505T + 23T^{2} \)
29 \( 1 + 3.18T + 29T^{2} \)
31 \( 1 - 1.77T + 31T^{2} \)
37 \( 1 - 2.81T + 37T^{2} \)
41 \( 1 + 11.8T + 41T^{2} \)
43 \( 1 - 2.30T + 43T^{2} \)
47 \( 1 - 8.14T + 47T^{2} \)
53 \( 1 - 9.84T + 53T^{2} \)
59 \( 1 + 9.60T + 59T^{2} \)
61 \( 1 + 7.24T + 61T^{2} \)
67 \( 1 + 6.12T + 67T^{2} \)
71 \( 1 + 2.83T + 71T^{2} \)
73 \( 1 - 4.80T + 73T^{2} \)
79 \( 1 - 16.5T + 79T^{2} \)
83 \( 1 - 0.236T + 83T^{2} \)
89 \( 1 + 7.78T + 89T^{2} \)
97 \( 1 + 4.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.579175163682764292946179431502, −7.73170331289889314711670976097, −7.15751346809225433726384188282, −6.16602889705350075964830802870, −5.57159358904416954270351064767, −4.73803216975477268541984654872, −3.77813490837862849657779462985, −3.35018493968626725169900029502, −2.66034493414734103708729874894, −0.43520512086109830230216209597, 0.43520512086109830230216209597, 2.66034493414734103708729874894, 3.35018493968626725169900029502, 3.77813490837862849657779462985, 4.73803216975477268541984654872, 5.57159358904416954270351064767, 6.16602889705350075964830802870, 7.15751346809225433726384188282, 7.73170331289889314711670976097, 8.579175163682764292946179431502

Graph of the $Z$-function along the critical line