L(s) = 1 | + i·5-s + 2·7-s − 2i·11-s + 2i·13-s − 4·17-s − 4i·19-s − 4·23-s − 25-s − 2i·29-s + 4·31-s + 2i·35-s + 2i·37-s − 6·41-s − 4i·43-s − 8·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s + 0.755·7-s − 0.603i·11-s + 0.554i·13-s − 0.970·17-s − 0.917i·19-s − 0.834·23-s − 0.200·25-s − 0.371i·29-s + 0.718·31-s + 0.338i·35-s + 0.328i·37-s − 0.937·41-s − 0.609i·43-s − 1.16·47-s + ⋯ |
Λ(s)=(=(5760s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(5760s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
5760
= 27⋅32⋅5
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
45.9938 |
Root analytic conductor: |
6.78187 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5760(2881,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5760, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
≈ |
0.6441297310 |
L(21) |
≈ |
0.6441297310 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−iT |
good | 7 | 1−2T+7T2 |
| 11 | 1+2iT−11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+4T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+2iT−29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−16iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.082400256523640018282581260327, −6.93142814549780539705180739273, −6.62110122072285913163900606985, −5.72619023313681491768728941686, −4.85240049707536555008275018235, −4.26960590191886573809103148557, −3.32090664175627645551676191427, −2.40616837131909052644371411417, −1.59956901693486321499320967536, −0.15633567195328539711829573712,
1.33931723470777923243463564057, 2.05179052624208101002207894400, 3.12591327207140560339997469979, 4.19103009978474118572067126364, 4.67909559982567454125530140772, 5.45883953832016902731987089983, 6.20615840572147053438454479915, 7.00292078738893923101586874100, 7.898336721004458663399858952717, 8.214237187798307473687710618935