Properties

Label 2-5760-8.5-c1-0-68
Degree $2$
Conductor $5760$
Sign $-0.707 + 0.707i$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s + 2·7-s − 2i·11-s + 2i·13-s − 4·17-s − 4i·19-s − 4·23-s − 25-s − 2i·29-s + 4·31-s + 2i·35-s + 2i·37-s − 6·41-s − 4i·43-s − 8·47-s + ⋯
L(s)  = 1  + 0.447i·5-s + 0.755·7-s − 0.603i·11-s + 0.554i·13-s − 0.970·17-s − 0.917i·19-s − 0.834·23-s − 0.200·25-s − 0.371i·29-s + 0.718·31-s + 0.338i·35-s + 0.328i·37-s − 0.937·41-s − 0.609i·43-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5760} (2881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6441297310\)
\(L(\frac12)\) \(\approx\) \(0.6441297310\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
good7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 2iT - 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 + 10iT - 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 12iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 16iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.082400256523640018282581260327, −6.93142814549780539705180739273, −6.62110122072285913163900606985, −5.72619023313681491768728941686, −4.85240049707536555008275018235, −4.26960590191886573809103148557, −3.32090664175627645551676191427, −2.40616837131909052644371411417, −1.59956901693486321499320967536, −0.15633567195328539711829573712, 1.33931723470777923243463564057, 2.05179052624208101002207894400, 3.12591327207140560339997469979, 4.19103009978474118572067126364, 4.67909559982567454125530140772, 5.45883953832016902731987089983, 6.20615840572147053438454479915, 7.00292078738893923101586874100, 7.898336721004458663399858952717, 8.214237187798307473687710618935

Graph of the $Z$-function along the critical line