L(s) = 1 | − 2.18·2-s + 2.76·4-s + 2.11·5-s − 1.67·8-s − 4.60·10-s + 5.76·11-s − 13-s − 1.87·16-s + 1.64·17-s + 2.67·19-s + 5.83·20-s − 12.5·22-s − 6.42·23-s − 0.545·25-s + 2.18·26-s + 6.04·29-s − 5.12·31-s + 7.45·32-s − 3.58·34-s + 5.74·37-s − 5.83·38-s − 3.53·40-s − 7.14·41-s − 4.47·43-s + 15.9·44-s + 14.0·46-s + 11.7·47-s + ⋯ |
L(s) = 1 | − 1.54·2-s + 1.38·4-s + 0.943·5-s − 0.591·8-s − 1.45·10-s + 1.73·11-s − 0.277·13-s − 0.469·16-s + 0.397·17-s + 0.612·19-s + 1.30·20-s − 2.68·22-s − 1.33·23-s − 0.109·25-s + 0.428·26-s + 1.12·29-s − 0.919·31-s + 1.31·32-s − 0.614·34-s + 0.944·37-s − 0.945·38-s − 0.558·40-s − 1.11·41-s − 0.681·43-s + 2.40·44-s + 2.06·46-s + 1.71·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.247553864\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.247553864\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + 2.18T + 2T^{2} \) |
| 5 | \( 1 - 2.11T + 5T^{2} \) |
| 11 | \( 1 - 5.76T + 11T^{2} \) |
| 17 | \( 1 - 1.64T + 17T^{2} \) |
| 19 | \( 1 - 2.67T + 19T^{2} \) |
| 23 | \( 1 + 6.42T + 23T^{2} \) |
| 29 | \( 1 - 6.04T + 29T^{2} \) |
| 31 | \( 1 + 5.12T + 31T^{2} \) |
| 37 | \( 1 - 5.74T + 37T^{2} \) |
| 41 | \( 1 + 7.14T + 41T^{2} \) |
| 43 | \( 1 + 4.47T + 43T^{2} \) |
| 47 | \( 1 - 11.7T + 47T^{2} \) |
| 53 | \( 1 + 3.44T + 53T^{2} \) |
| 59 | \( 1 - 13.1T + 59T^{2} \) |
| 61 | \( 1 + 6.24T + 61T^{2} \) |
| 67 | \( 1 - 7.74T + 67T^{2} \) |
| 71 | \( 1 + 13.6T + 71T^{2} \) |
| 73 | \( 1 - 15.5T + 73T^{2} \) |
| 79 | \( 1 - 1.12T + 79T^{2} \) |
| 83 | \( 1 - 4.96T + 83T^{2} \) |
| 89 | \( 1 - 1.14T + 89T^{2} \) |
| 97 | \( 1 - 6.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.267276373221374825379827996146, −7.55915393153350378739075840417, −6.79638666639168389239299985342, −6.27636869942439914555890857291, −5.52298020904386848728986811061, −4.42561997092519223416257278164, −3.52460765254531105911368139347, −2.28382112034212283214981919499, −1.63833109033798898816016151667, −0.796259506961945288164606082058,
0.796259506961945288164606082058, 1.63833109033798898816016151667, 2.28382112034212283214981919499, 3.52460765254531105911368139347, 4.42561997092519223416257278164, 5.52298020904386848728986811061, 6.27636869942439914555890857291, 6.79638666639168389239299985342, 7.55915393153350378739075840417, 8.267276373221374825379827996146