Properties

Label 2-5733-1.1-c1-0-67
Degree $2$
Conductor $5733$
Sign $1$
Analytic cond. $45.7782$
Root an. cond. $6.76596$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.18·2-s + 2.76·4-s + 2.11·5-s − 1.67·8-s − 4.60·10-s + 5.76·11-s − 13-s − 1.87·16-s + 1.64·17-s + 2.67·19-s + 5.83·20-s − 12.5·22-s − 6.42·23-s − 0.545·25-s + 2.18·26-s + 6.04·29-s − 5.12·31-s + 7.45·32-s − 3.58·34-s + 5.74·37-s − 5.83·38-s − 3.53·40-s − 7.14·41-s − 4.47·43-s + 15.9·44-s + 14.0·46-s + 11.7·47-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.38·4-s + 0.943·5-s − 0.591·8-s − 1.45·10-s + 1.73·11-s − 0.277·13-s − 0.469·16-s + 0.397·17-s + 0.612·19-s + 1.30·20-s − 2.68·22-s − 1.33·23-s − 0.109·25-s + 0.428·26-s + 1.12·29-s − 0.919·31-s + 1.31·32-s − 0.614·34-s + 0.944·37-s − 0.945·38-s − 0.558·40-s − 1.11·41-s − 0.681·43-s + 2.40·44-s + 2.06·46-s + 1.71·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5733\)    =    \(3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(45.7782\)
Root analytic conductor: \(6.76596\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5733,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.247553864\)
\(L(\frac12)\) \(\approx\) \(1.247553864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + 2.18T + 2T^{2} \)
5 \( 1 - 2.11T + 5T^{2} \)
11 \( 1 - 5.76T + 11T^{2} \)
17 \( 1 - 1.64T + 17T^{2} \)
19 \( 1 - 2.67T + 19T^{2} \)
23 \( 1 + 6.42T + 23T^{2} \)
29 \( 1 - 6.04T + 29T^{2} \)
31 \( 1 + 5.12T + 31T^{2} \)
37 \( 1 - 5.74T + 37T^{2} \)
41 \( 1 + 7.14T + 41T^{2} \)
43 \( 1 + 4.47T + 43T^{2} \)
47 \( 1 - 11.7T + 47T^{2} \)
53 \( 1 + 3.44T + 53T^{2} \)
59 \( 1 - 13.1T + 59T^{2} \)
61 \( 1 + 6.24T + 61T^{2} \)
67 \( 1 - 7.74T + 67T^{2} \)
71 \( 1 + 13.6T + 71T^{2} \)
73 \( 1 - 15.5T + 73T^{2} \)
79 \( 1 - 1.12T + 79T^{2} \)
83 \( 1 - 4.96T + 83T^{2} \)
89 \( 1 - 1.14T + 89T^{2} \)
97 \( 1 - 6.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.267276373221374825379827996146, −7.55915393153350378739075840417, −6.79638666639168389239299985342, −6.27636869942439914555890857291, −5.52298020904386848728986811061, −4.42561997092519223416257278164, −3.52460765254531105911368139347, −2.28382112034212283214981919499, −1.63833109033798898816016151667, −0.796259506961945288164606082058, 0.796259506961945288164606082058, 1.63833109033798898816016151667, 2.28382112034212283214981919499, 3.52460765254531105911368139347, 4.42561997092519223416257278164, 5.52298020904386848728986811061, 6.27636869942439914555890857291, 6.79638666639168389239299985342, 7.55915393153350378739075840417, 8.267276373221374825379827996146

Graph of the $Z$-function along the critical line