Properties

Label 2-5733-1.1-c1-0-151
Degree $2$
Conductor $5733$
Sign $-1$
Analytic cond. $45.7782$
Root an. cond. $6.76596$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.86·2-s + 1.48·4-s + 0.866·5-s + 0.965·8-s − 1.61·10-s + 3.86·11-s − 13-s − 4.76·16-s − 3.34·17-s + 5.38·19-s + 1.28·20-s − 7.21·22-s + 5.24·23-s − 4.24·25-s + 1.86·26-s − 1.69·29-s − 7.56·31-s + 6.96·32-s + 6.24·34-s − 4.83·37-s − 10.0·38-s + 0.836·40-s − 4.06·41-s + 4.03·43-s + 5.73·44-s − 9.79·46-s − 3.65·47-s + ⋯
L(s)  = 1  − 1.31·2-s + 0.741·4-s + 0.387·5-s + 0.341·8-s − 0.511·10-s + 1.16·11-s − 0.277·13-s − 1.19·16-s − 0.812·17-s + 1.23·19-s + 0.287·20-s − 1.53·22-s + 1.09·23-s − 0.849·25-s + 0.365·26-s − 0.315·29-s − 1.35·31-s + 1.23·32-s + 1.07·34-s − 0.794·37-s − 1.62·38-s + 0.132·40-s − 0.635·41-s + 0.615·43-s + 0.864·44-s − 1.44·46-s − 0.532·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5733\)    =    \(3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(45.7782\)
Root analytic conductor: \(6.76596\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5733} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5733,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + 1.86T + 2T^{2} \)
5 \( 1 - 0.866T + 5T^{2} \)
11 \( 1 - 3.86T + 11T^{2} \)
17 \( 1 + 3.34T + 17T^{2} \)
19 \( 1 - 5.38T + 19T^{2} \)
23 \( 1 - 5.24T + 23T^{2} \)
29 \( 1 + 1.69T + 29T^{2} \)
31 \( 1 + 7.56T + 31T^{2} \)
37 \( 1 + 4.83T + 37T^{2} \)
41 \( 1 + 4.06T + 41T^{2} \)
43 \( 1 - 4.03T + 43T^{2} \)
47 \( 1 + 3.65T + 47T^{2} \)
53 \( 1 - 0.215T + 53T^{2} \)
59 \( 1 + 2.78T + 59T^{2} \)
61 \( 1 + 9.03T + 61T^{2} \)
67 \( 1 + 7.66T + 67T^{2} \)
71 \( 1 + 4.90T + 71T^{2} \)
73 \( 1 + 15.5T + 73T^{2} \)
79 \( 1 - 9.43T + 79T^{2} \)
83 \( 1 + 4.09T + 83T^{2} \)
89 \( 1 + 0.418T + 89T^{2} \)
97 \( 1 - 7.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76053849550043520125223867359, −7.22712537660392855090900714318, −6.65928795203886038964882420826, −5.74658259521821364202068332874, −4.90166000724959548151575766403, −4.04376045414144264031216977836, −3.06809674577558386794148505998, −1.87848320816067707672919345844, −1.29643835651447510602143817061, 0, 1.29643835651447510602143817061, 1.87848320816067707672919345844, 3.06809674577558386794148505998, 4.04376045414144264031216977836, 4.90166000724959548151575766403, 5.74658259521821364202068332874, 6.65928795203886038964882420826, 7.22712537660392855090900714318, 7.76053849550043520125223867359

Graph of the $Z$-function along the critical line