Properties

Label 2-570-95.49-c1-0-3
Degree $2$
Conductor $570$
Sign $-0.150 - 0.988i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (0.919 + 2.03i)5-s + (−0.499 − 0.866i)6-s + 1.07i·7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (−0.223 + 2.22i)10-s + 0.410·11-s − 0.999i·12-s + (−3.30 + 1.91i)13-s + (−0.537 + 0.931i)14-s + (0.223 − 2.22i)15-s + (−0.5 + 0.866i)16-s + (−1.08 − 0.627i)17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (−0.499 − 0.288i)3-s + (0.249 + 0.433i)4-s + (0.410 + 0.911i)5-s + (−0.204 − 0.353i)6-s + 0.406i·7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (−0.0706 + 0.703i)10-s + 0.123·11-s − 0.288i·12-s + (−0.917 + 0.529i)13-s + (−0.143 + 0.248i)14-s + (0.0576 − 0.574i)15-s + (−0.125 + 0.216i)16-s + (−0.263 − 0.152i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.150 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.150 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.150 - 0.988i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.150 - 0.988i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.11101 + 1.29247i\)
\(L(\frac12)\) \(\approx\) \(1.11101 + 1.29247i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (0.866 + 0.5i)T \)
5 \( 1 + (-0.919 - 2.03i)T \)
19 \( 1 + (-3.85 - 2.03i)T \)
good7 \( 1 - 1.07iT - 7T^{2} \)
11 \( 1 - 0.410T + 11T^{2} \)
13 \( 1 + (3.30 - 1.91i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (1.08 + 0.627i)T + (8.5 + 14.7i)T^{2} \)
23 \( 1 + (3.23 - 1.86i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-1.18 - 2.05i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 7.75T + 31T^{2} \)
37 \( 1 + 2.08iT - 37T^{2} \)
41 \( 1 + (2.80 - 4.85i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-1.92 - 1.10i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (-3.58 + 2.07i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (4.32 - 2.49i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.25 + 2.17i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (3.37 + 5.84i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-8.07 + 4.66i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-4.79 + 8.30i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (6.02 + 3.47i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4.47 + 7.74i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 9.12iT - 83T^{2} \)
89 \( 1 + (2.72 + 4.72i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-10.5 - 6.08i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19845704555758893240876489500, −10.15258707227683201831710513690, −9.379765162231682209747529605605, −7.981885316650843249961087547734, −7.15005512534631017827354151327, −6.38970141571583448623279681957, −5.60493783291235409567012491437, −4.58952769051961388690452670356, −3.18455745269861130847299066400, −2.04577928983534869703768239162, 0.863000752122615408681113861171, 2.51198839456964371157507443787, 4.03806072998021917654700816917, 4.86014430811842035135277006318, 5.60566351262887146389200715622, 6.62215934290873181921811442505, 7.77695842234557450597013028648, 8.949026944040508768661922849836, 9.948245646147675402161369998133, 10.36102234741441114166508684945

Graph of the $Z$-function along the critical line