L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (−2.03 − 0.917i)5-s + (0.499 + 0.866i)6-s + 3i·7-s − 0.999i·8-s + (0.499 + 0.866i)9-s + (1.30 + 1.81i)10-s + 2·11-s − 0.999i·12-s + (2.98 − 1.72i)13-s + (1.5 − 2.59i)14-s + (1.30 + 1.81i)15-s + (−0.5 + 0.866i)16-s + (−4.24 − 2.44i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.499 − 0.288i)3-s + (0.249 + 0.433i)4-s + (−0.911 − 0.410i)5-s + (0.204 + 0.353i)6-s + 1.13i·7-s − 0.353i·8-s + (0.166 + 0.288i)9-s + (0.413 + 0.573i)10-s + 0.603·11-s − 0.288i·12-s + (0.828 − 0.478i)13-s + (0.400 − 0.694i)14-s + (0.337 + 0.468i)15-s + (−0.125 + 0.216i)16-s + (−1.02 − 0.594i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.427 + 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.427 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.306560 - 0.483981i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.306560 - 0.483981i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (2.03 + 0.917i)T \) |
| 19 | \( 1 + (-1 + 4.24i)T \) |
good | 7 | \( 1 - 3iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (-2.98 + 1.72i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (4.24 + 2.44i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.12 + 1.22i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.67 + 8.09i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.89T + 31T^{2} \) |
| 37 | \( 1 + 4.55iT - 37T^{2} \) |
| 41 | \( 1 + (1.22 - 2.12i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.476 - 0.275i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.07 + 1.77i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.68 + 1.55i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.89 + 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.17 + 3.76i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.25 + 0.724i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.77 + 3.07i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (10.3 + 5.94i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.39 + 14.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.34iT - 83T^{2} \) |
| 89 | \( 1 + (5.77 + 10.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-16.1 - 9.34i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75178409493874954958015686926, −9.186717124853465636555922830658, −8.960821079197785729346590269207, −7.895435736405010129268538064840, −6.99969433952196154843334718509, −5.94131132173191845088720318561, −4.82392331952218219030606050288, −3.58112059221371697357359397729, −2.16568300575501707031925681257, −0.47116116087369537822635055725,
1.33252892601386570058668800920, 3.63420317726536867041668183230, 4.22836728562428842150314098739, 5.69876289081015453186845058619, 6.86503385535843051015542182189, 7.20422019280301063000698805459, 8.400889793439318086166057667899, 9.182898224295986552978081902983, 10.36765331253932282044761255367, 10.92220451574689539382826155779