Properties

Label 2-570-95.49-c1-0-11
Degree $2$
Conductor $570$
Sign $0.225 - 0.974i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (2.12 − 0.710i)5-s + (0.499 + 0.866i)6-s + 4.67i·7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (2.19 + 0.445i)10-s − 3.96·11-s + 0.999i·12-s + (−0.698 + 0.403i)13-s + (−2.33 + 4.04i)14-s + (2.19 + 0.445i)15-s + (−0.5 + 0.866i)16-s + (−4.01 − 2.31i)17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 + 0.433i)4-s + (0.948 − 0.317i)5-s + (0.204 + 0.353i)6-s + 1.76i·7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (0.692 + 0.140i)10-s − 1.19·11-s + 0.288i·12-s + (−0.193 + 0.111i)13-s + (−0.624 + 1.08i)14-s + (0.565 + 0.114i)15-s + (−0.125 + 0.216i)16-s + (−0.974 − 0.562i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.225 - 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.225 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.225 - 0.974i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.225 - 0.974i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.04872 + 1.62932i\)
\(L(\frac12)\) \(\approx\) \(2.04872 + 1.62932i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
5 \( 1 + (-2.12 + 0.710i)T \)
19 \( 1 + (-3.01 + 3.15i)T \)
good7 \( 1 - 4.67iT - 7T^{2} \)
11 \( 1 + 3.96T + 11T^{2} \)
13 \( 1 + (0.698 - 0.403i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (4.01 + 2.31i)T + (8.5 + 14.7i)T^{2} \)
23 \( 1 + (-5.52 + 3.19i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (2.03 + 3.51i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 3.35T + 31T^{2} \)
37 \( 1 + 2.19iT - 37T^{2} \)
41 \( 1 + (2.02 - 3.51i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-6.36 - 3.67i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (-8.12 + 4.69i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-1.34 + 0.778i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-3.94 + 6.83i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2.20 - 3.81i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (6.42 - 3.70i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-1.08 + 1.87i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (10.2 + 5.91i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (4.67 - 8.09i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 9.92iT - 83T^{2} \)
89 \( 1 + (9.13 + 15.8i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-10.7 - 6.20i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00424616298702057754719885898, −9.828079684645541452500908426673, −9.008345920270243217825953611736, −8.527230131058721531143786686246, −7.27146122088299571268338063768, −6.11766769050665214129437340086, −5.27511591130516503419372165653, −4.71994373062196446173082365945, −2.71176097914444366493079247070, −2.44382145506491122270150127240, 1.31318759789367771285183895512, 2.64778911571576412377538435661, 3.67862178536922268212065046953, 4.83536315917141665983109980504, 5.90763680359452860721530266336, 7.08279150966468583334881363617, 7.52500126298863729135377182332, 8.915911986122514399404279290237, 10.05667767122654709986666001793, 10.48034841623663415971018151662

Graph of the $Z$-function along the critical line