L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.707 + 0.707i)3-s − 1.00i·4-s + (0.114 − 2.23i)5-s − 1.00·6-s + (−1.40 − 1.40i)7-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (1.49 + 1.66i)10-s − 5.29·11-s + (0.707 − 0.707i)12-s + (−1.91 − 1.91i)13-s + 1.98·14-s + (1.66 − 1.49i)15-s − 1.00·16-s + (0.488 + 0.488i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.408 + 0.408i)3-s − 0.500i·4-s + (0.0512 − 0.998i)5-s − 0.408·6-s + (−0.530 − 0.530i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + (0.473 + 0.524i)10-s − 1.59·11-s + (0.204 − 0.204i)12-s + (−0.532 − 0.532i)13-s + 0.530·14-s + (0.428 − 0.386i)15-s − 0.250·16-s + (0.118 + 0.118i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.454 + 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.454 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.240051 - 0.392150i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.240051 - 0.392150i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.114 + 2.23i)T \) |
| 19 | \( 1 + (2.44 + 3.60i)T \) |
good | 7 | \( 1 + (1.40 + 1.40i)T + 7iT^{2} \) |
| 11 | \( 1 + 5.29T + 11T^{2} \) |
| 13 | \( 1 + (1.91 + 1.91i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.488 - 0.488i)T + 17iT^{2} \) |
| 23 | \( 1 + (3.88 - 3.88i)T - 23iT^{2} \) |
| 29 | \( 1 + 6.19T + 29T^{2} \) |
| 31 | \( 1 - 7.84iT - 31T^{2} \) |
| 37 | \( 1 + (-5.60 + 5.60i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.90iT - 41T^{2} \) |
| 43 | \( 1 + (-7.12 + 7.12i)T - 43iT^{2} \) |
| 47 | \( 1 + (7.86 + 7.86i)T + 47iT^{2} \) |
| 53 | \( 1 + (-8.93 - 8.93i)T + 53iT^{2} \) |
| 59 | \( 1 + 0.611T + 59T^{2} \) |
| 61 | \( 1 - 8.31T + 61T^{2} \) |
| 67 | \( 1 + (-10.2 + 10.2i)T - 67iT^{2} \) |
| 71 | \( 1 - 3.97iT - 71T^{2} \) |
| 73 | \( 1 + (-7.72 + 7.72i)T - 73iT^{2} \) |
| 79 | \( 1 + 17.1T + 79T^{2} \) |
| 83 | \( 1 + (-5.43 + 5.43i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.42T + 89T^{2} \) |
| 97 | \( 1 + (3.10 - 3.10i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22196345160555808382262203722, −9.537988954899950870275336097436, −8.670803141617416757815117739932, −7.86860070014936393446884781761, −7.17150333859042570840954525881, −5.64541163963525836515052446342, −5.05013121874929677891102055302, −3.80743070541273593785835958619, −2.28413096497609715801058584050, −0.26574610698723918410087528684,
2.26561377250098940332346394833, 2.74119865688740120578704506970, 4.06636531463781217252035826307, 5.74082911115808951774079862779, 6.65056578067013602502999938056, 7.74937384282096048302452914982, 8.179426375030616216191479650722, 9.608824956174886123781615222016, 9.947253111178127775275163745854, 10.98117082943751010212584978187