L(s) = 1 | + (0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s + 1.00i·4-s + (−1.66 − 1.49i)5-s + 1.00·6-s + (−0.170 + 0.170i)7-s + (−0.707 + 0.707i)8-s − 1.00i·9-s + (−0.120 − 2.23i)10-s + 3.43·11-s + (0.707 + 0.707i)12-s + (4.54 − 4.54i)13-s − 0.240·14-s + (−2.23 + 0.120i)15-s − 1.00·16-s + (0.537 − 0.537i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.408 − 0.408i)3-s + 0.500i·4-s + (−0.744 − 0.668i)5-s + 0.408·6-s + (−0.0643 + 0.0643i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (−0.0380 − 0.706i)10-s + 1.03·11-s + (0.204 + 0.204i)12-s + (1.25 − 1.25i)13-s − 0.0643·14-s + (−0.576 + 0.0310i)15-s − 0.250·16-s + (0.130 − 0.130i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.01371 - 0.309567i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.01371 - 0.309567i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.66 + 1.49i)T \) |
| 19 | \( 1 + (-2.42 + 3.62i)T \) |
good | 7 | \( 1 + (0.170 - 0.170i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.43T + 11T^{2} \) |
| 13 | \( 1 + (-4.54 + 4.54i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.537 + 0.537i)T - 17iT^{2} \) |
| 23 | \( 1 + (-5.15 - 5.15i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.37T + 29T^{2} \) |
| 31 | \( 1 + 5.37iT - 31T^{2} \) |
| 37 | \( 1 + (5.54 + 5.54i)T + 37iT^{2} \) |
| 41 | \( 1 + 3.68iT - 41T^{2} \) |
| 43 | \( 1 + (-2.29 - 2.29i)T + 43iT^{2} \) |
| 47 | \( 1 + (9.57 - 9.57i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.93 - 1.93i)T - 53iT^{2} \) |
| 59 | \( 1 + 4.20T + 59T^{2} \) |
| 61 | \( 1 - 1.65T + 61T^{2} \) |
| 67 | \( 1 + (-0.481 - 0.481i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.93iT - 71T^{2} \) |
| 73 | \( 1 + (-8.74 - 8.74i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.15T + 79T^{2} \) |
| 83 | \( 1 + (9.97 + 9.97i)T + 83iT^{2} \) |
| 89 | \( 1 - 2.10T + 89T^{2} \) |
| 97 | \( 1 + (-10.8 - 10.8i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10657617636751806514389038701, −9.364372429377285983045401192396, −8.859862947519289974498149218963, −7.85145889023459127970219561691, −7.27659198727543861868487389030, −6.09322312351371460821935910187, −5.18622620254810849118499768389, −3.90725143617547161485136019021, −3.19185692605158870178146101315, −1.13083234475132818666413665332,
1.66383942899470364336610096666, 3.35860650366128964006628490459, 3.77689652509866896515370062021, 4.85125622236662708838737287810, 6.35805951548625947401226584001, 6.95936735203920946242588996454, 8.348469705054110507170681616635, 9.054602941505352881899304561766, 10.07653083565753964868976481325, 10.94000033165450407097597407986