Properties

Label 2-570-95.18-c1-0-14
Degree $2$
Conductor $570$
Sign $0.483 - 0.875i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.707 + 0.707i)3-s + 1.00i·4-s + (1.42 + 1.72i)5-s − 1.00·6-s + (3.40 − 3.40i)7-s + (−0.707 + 0.707i)8-s − 1.00i·9-s + (−0.215 + 2.22i)10-s + 3.94·11-s + (−0.707 − 0.707i)12-s + (4.03 − 4.03i)13-s + 4.81·14-s + (−2.22 − 0.215i)15-s − 1.00·16-s + (−3.90 + 3.90i)17-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + (−0.408 + 0.408i)3-s + 0.500i·4-s + (0.635 + 0.772i)5-s − 0.408·6-s + (1.28 − 1.28i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (−0.0682 + 0.703i)10-s + 1.18·11-s + (−0.204 − 0.204i)12-s + (1.11 − 1.11i)13-s + 1.28·14-s + (−0.574 − 0.0557i)15-s − 0.250·16-s + (−0.947 + 0.947i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.483 - 0.875i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (493, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.483 - 0.875i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.86477 + 1.10060i\)
\(L(\frac12)\) \(\approx\) \(1.86477 + 1.10060i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 0.707i)T \)
3 \( 1 + (0.707 - 0.707i)T \)
5 \( 1 + (-1.42 - 1.72i)T \)
19 \( 1 + (3.49 + 2.60i)T \)
good7 \( 1 + (-3.40 + 3.40i)T - 7iT^{2} \)
11 \( 1 - 3.94T + 11T^{2} \)
13 \( 1 + (-4.03 + 4.03i)T - 13iT^{2} \)
17 \( 1 + (3.90 - 3.90i)T - 17iT^{2} \)
23 \( 1 + (-0.537 - 0.537i)T + 23iT^{2} \)
29 \( 1 + 6.28T + 29T^{2} \)
31 \( 1 - 7.00iT - 31T^{2} \)
37 \( 1 + (-1.05 - 1.05i)T + 37iT^{2} \)
41 \( 1 + 3.03iT - 41T^{2} \)
43 \( 1 + (5.70 + 5.70i)T + 43iT^{2} \)
47 \( 1 + (2.04 - 2.04i)T - 47iT^{2} \)
53 \( 1 + (4.39 - 4.39i)T - 53iT^{2} \)
59 \( 1 - 2.32T + 59T^{2} \)
61 \( 1 + 9.32T + 61T^{2} \)
67 \( 1 + (-7.35 - 7.35i)T + 67iT^{2} \)
71 \( 1 + 9.62iT - 71T^{2} \)
73 \( 1 + (-4.47 - 4.47i)T + 73iT^{2} \)
79 \( 1 + 0.991T + 79T^{2} \)
83 \( 1 + (-6.64 - 6.64i)T + 83iT^{2} \)
89 \( 1 + 7.09T + 89T^{2} \)
97 \( 1 + (7.11 + 7.11i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89884778185843634027116947673, −10.40625619313041246956532011439, −9.012982004789773966182643163831, −8.141245968335343489890978952219, −6.99391361086851408627643491467, −6.39209514576320259694748170907, −5.37332260372996531228561007773, −4.26413591631868548760469778835, −3.54375657100399274393155139920, −1.57866209089037515794718852425, 1.54337266397143508784882773733, 2.11436836763297951496611674161, 4.16655660181977281474248914850, 4.93953042963332345556925673974, 5.94196354496356848322077489291, 6.52465316918755560089009272632, 8.185553441125115500751702755339, 8.981757640352600795179316231211, 9.504346779355957152005859915522, 11.23568939518729060333265734370

Graph of the $Z$-function along the critical line