Properties

Label 2-570-57.8-c1-0-4
Degree $2$
Conductor $570$
Sign $0.486 - 0.873i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−1.28 + 1.16i)3-s + (−0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.362 + 1.69i)6-s − 0.535·7-s − 0.999·8-s + (0.304 − 2.98i)9-s + (−0.866 + 0.499i)10-s + 5.20i·11-s + (1.64 + 0.532i)12-s + (1.58 − 0.917i)13-s + (−0.267 + 0.463i)14-s + (1.69 − 0.362i)15-s + (−0.5 + 0.866i)16-s + (3.93 + 2.27i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.742 + 0.670i)3-s + (−0.249 − 0.433i)4-s + (−0.387 − 0.223i)5-s + (0.148 + 0.691i)6-s − 0.202·7-s − 0.353·8-s + (0.101 − 0.994i)9-s + (−0.273 + 0.158i)10-s + 1.57i·11-s + (0.475 + 0.153i)12-s + (0.440 − 0.254i)13-s + (−0.0715 + 0.123i)14-s + (0.437 − 0.0936i)15-s + (−0.125 + 0.216i)16-s + (0.954 + 0.551i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.486 - 0.873i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.486 - 0.873i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.824288 + 0.484772i\)
\(L(\frac12)\) \(\approx\) \(0.824288 + 0.484772i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 0.866i)T \)
3 \( 1 + (1.28 - 1.16i)T \)
5 \( 1 + (0.866 + 0.5i)T \)
19 \( 1 + (1.25 - 4.17i)T \)
good7 \( 1 + 0.535T + 7T^{2} \)
11 \( 1 - 5.20iT - 11T^{2} \)
13 \( 1 + (-1.58 + 0.917i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (-3.93 - 2.27i)T + (8.5 + 14.7i)T^{2} \)
23 \( 1 + (5.55 - 3.20i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-4.19 - 7.27i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 4.17iT - 31T^{2} \)
37 \( 1 + 5.32iT - 37T^{2} \)
41 \( 1 + (2.33 - 4.05i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-4.21 + 7.30i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (3.52 - 2.03i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3.26 - 5.66i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3.47 + 6.01i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.11 - 7.12i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (0.445 - 0.257i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (3.29 - 5.71i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-3.05 + 5.29i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-7.65 - 4.42i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + 13.2iT - 83T^{2} \)
89 \( 1 + (8.15 + 14.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.567 - 0.327i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75190181305146936515750847999, −10.19070640794632631774022653751, −9.548700024320804471607834729970, −8.393824422088026399307600727234, −7.18687831644193111037759081377, −6.02893428700863192057902514651, −5.16574914319665321834262332880, −4.19383548418521534087971949982, −3.42939441647792348834344499267, −1.53442584217101003443071635241, 0.56385745455046746776519190078, 2.74765699087325832994743224215, 4.04959974678060943861419485083, 5.26029089210254524309148963750, 6.20367803517028074692225293367, 6.67657283281122246271733755598, 7.947597114722438476729560821538, 8.327677537340297985378979297646, 9.735769594253905149644947691933, 10.88557771911947429220446587206

Graph of the $Z$-function along the critical line