L(s) = 1 | + (0.5 − 0.866i)2-s + (1.54 − 0.786i)3-s + (−0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.0903 − 1.72i)6-s + 2.34·7-s − 0.999·8-s + (1.76 − 2.42i)9-s + (−0.866 + 0.499i)10-s − 2.39i·11-s + (−1.45 − 0.943i)12-s + (−0.414 + 0.239i)13-s + (1.17 − 2.02i)14-s + (−1.72 − 0.0903i)15-s + (−0.5 + 0.866i)16-s + (−2.40 − 1.38i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.890 − 0.454i)3-s + (−0.249 − 0.433i)4-s + (−0.387 − 0.223i)5-s + (0.0368 − 0.706i)6-s + 0.885·7-s − 0.353·8-s + (0.587 − 0.809i)9-s + (−0.273 + 0.158i)10-s − 0.723i·11-s + (−0.419 − 0.272i)12-s + (−0.114 + 0.0663i)13-s + (0.312 − 0.541i)14-s + (−0.446 − 0.0233i)15-s + (−0.125 + 0.216i)16-s + (−0.582 − 0.336i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.245 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.245 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39353 - 1.78964i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39353 - 1.78964i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.54 + 0.786i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.994 - 4.24i)T \) |
good | 7 | \( 1 - 2.34T + 7T^{2} \) |
| 11 | \( 1 + 2.39iT - 11T^{2} \) |
| 13 | \( 1 + (0.414 - 0.239i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.40 + 1.38i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.80 + 1.03i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.313 + 0.543i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.05iT - 31T^{2} \) |
| 37 | \( 1 + 5.67iT - 37T^{2} \) |
| 41 | \( 1 + (-1.04 + 1.81i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.77 - 6.53i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.94 + 1.12i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.64 - 11.5i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.13 - 5.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.25 - 2.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.3 + 6.53i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.68 - 4.64i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.81 - 10.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.1 - 5.86i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 11.3iT - 83T^{2} \) |
| 89 | \( 1 + (4.97 + 8.61i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.49 - 4.32i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65069961325754201395783604107, −9.513924067903942421478827731091, −8.670542626249559081113739599608, −8.018819292928084487463442121477, −7.04042525586581729802596910420, −5.75427449966015102328984386443, −4.55319391381186609870402133001, −3.62601491795194332979602646374, −2.46700426107337010037848138649, −1.19387472688169202666661869104,
2.13041308297085723643136067213, 3.43157273508499566698967714591, 4.52372104878816100247498502254, 5.09677582438172810889127659879, 6.71792067489866121241260388896, 7.49855628466213972629434516187, 8.257656089925674124778955634369, 9.015523849872258443673937776719, 9.983913613566472838711789591476, 10.99384250899359498311581011187