L(s) = 1 | + (0.5 + 0.866i)2-s + (1.00 − 1.41i)3-s + (−0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + (1.72 + 0.162i)6-s + 3.36·7-s − 0.999·8-s + (−0.987 − 2.83i)9-s + (−0.866 − 0.499i)10-s − 0.795i·11-s + (0.721 + 1.57i)12-s + (1.59 + 0.922i)13-s + (1.68 + 2.91i)14-s + (−0.162 + 1.72i)15-s + (−0.5 − 0.866i)16-s + (6.17 − 3.56i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.579 − 0.815i)3-s + (−0.249 + 0.433i)4-s + (−0.387 + 0.223i)5-s + (0.703 + 0.0664i)6-s + 1.27·7-s − 0.353·8-s + (−0.329 − 0.944i)9-s + (−0.273 − 0.158i)10-s − 0.239i·11-s + (0.208 + 0.454i)12-s + (0.443 + 0.255i)13-s + (0.449 + 0.779i)14-s + (−0.0420 + 0.445i)15-s + (−0.125 − 0.216i)16-s + (1.49 − 0.865i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19893 + 0.153911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19893 + 0.153911i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.00 + 1.41i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.831 - 4.27i)T \) |
good | 7 | \( 1 - 3.36T + 7T^{2} \) |
| 11 | \( 1 + 0.795iT - 11T^{2} \) |
| 13 | \( 1 + (-1.59 - 0.922i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.17 + 3.56i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.72 - 0.997i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.95 - 3.37i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.28iT - 31T^{2} \) |
| 37 | \( 1 - 3.63iT - 37T^{2} \) |
| 41 | \( 1 + (-2.08 - 3.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.75 + 3.03i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.13 - 1.80i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.21 - 5.56i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.40 + 7.62i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.34 - 5.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.16 + 1.82i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.800 + 1.38i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.05 + 12.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (10.3 - 5.97i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 13.9iT - 83T^{2} \) |
| 89 | \( 1 + (-1.83 + 3.18i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (15.9 - 9.19i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03532988962441241851793068868, −9.630384459524488763647549445094, −8.617486000997006762264152654168, −7.79477992550538561312718647216, −7.50928889078319111174227195646, −6.26588724418734967795609106485, −5.34316687015409208625771657408, −4.06653170757048343188536548504, −2.99495930426835636077349133286, −1.40262724549243053873365686998,
1.55858031943707593463629212911, 2.99769186921798698104366511181, 4.04653139783002053830104813218, 4.84828074758586540207708681423, 5.66388898910639060568765971903, 7.43291562977061543342374280212, 8.317126296797726755806528152033, 8.921650743856556416550464262242, 10.05108667879731601136097789497, 10.76958288002827117367942220020