Properties

Label 2-570-57.50-c1-0-16
Degree $2$
Conductor $570$
Sign $0.486 + 0.873i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−1.28 − 1.16i)3-s + (−0.499 + 0.866i)4-s + (−0.866 + 0.5i)5-s + (0.362 − 1.69i)6-s − 0.535·7-s − 0.999·8-s + (0.304 + 2.98i)9-s + (−0.866 − 0.499i)10-s − 5.20i·11-s + (1.64 − 0.532i)12-s + (1.58 + 0.917i)13-s + (−0.267 − 0.463i)14-s + (1.69 + 0.362i)15-s + (−0.5 − 0.866i)16-s + (3.93 − 2.27i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.742 − 0.670i)3-s + (−0.249 + 0.433i)4-s + (−0.387 + 0.223i)5-s + (0.148 − 0.691i)6-s − 0.202·7-s − 0.353·8-s + (0.101 + 0.994i)9-s + (−0.273 − 0.158i)10-s − 1.57i·11-s + (0.475 − 0.153i)12-s + (0.440 + 0.254i)13-s + (−0.0715 − 0.123i)14-s + (0.437 + 0.0936i)15-s + (−0.125 − 0.216i)16-s + (0.954 − 0.551i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $0.486 + 0.873i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (221, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ 0.486 + 0.873i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.824288 - 0.484772i\)
\(L(\frac12)\) \(\approx\) \(0.824288 - 0.484772i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (1.28 + 1.16i)T \)
5 \( 1 + (0.866 - 0.5i)T \)
19 \( 1 + (1.25 + 4.17i)T \)
good7 \( 1 + 0.535T + 7T^{2} \)
11 \( 1 + 5.20iT - 11T^{2} \)
13 \( 1 + (-1.58 - 0.917i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + (-3.93 + 2.27i)T + (8.5 - 14.7i)T^{2} \)
23 \( 1 + (5.55 + 3.20i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (-4.19 + 7.27i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 4.17iT - 31T^{2} \)
37 \( 1 - 5.32iT - 37T^{2} \)
41 \( 1 + (2.33 + 4.05i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-4.21 - 7.30i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (3.52 + 2.03i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3.26 + 5.66i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-3.47 - 6.01i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.11 + 7.12i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (0.445 + 0.257i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (3.29 + 5.71i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.05 - 5.29i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-7.65 + 4.42i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 - 13.2iT - 83T^{2} \)
89 \( 1 + (8.15 - 14.1i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-0.567 + 0.327i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88557771911947429220446587206, −9.735769594253905149644947691933, −8.327677537340297985378979297646, −7.947597114722438476729560821538, −6.67657283281122246271733755598, −6.20367803517028074692225293367, −5.26029089210254524309148963750, −4.04959974678060943861419485083, −2.74765699087325832994743224215, −0.56385745455046746776519190078, 1.53442584217101003443071635241, 3.42939441647792348834344499267, 4.19383548418521534087971949982, 5.16574914319665321834262332880, 6.02893428700863192057902514651, 7.18687831644193111037759081377, 8.393824422088026399307600727234, 9.548700024320804471607834729970, 10.19070640794632631774022653751, 10.75190181305146936515750847999

Graph of the $Z$-function along the critical line