Properties

Label 2-570-5.4-c1-0-14
Degree $2$
Conductor $570$
Sign $-0.894 + 0.447i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s i·3-s − 4-s + (2 − i)5-s − 6-s + i·8-s − 9-s + (−1 − 2i)10-s − 4·11-s + i·12-s − 4i·13-s + (−1 − 2i)15-s + 16-s − 6i·17-s + i·18-s + 19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (0.894 − 0.447i)5-s − 0.408·6-s + 0.353i·8-s − 0.333·9-s + (−0.316 − 0.632i)10-s − 1.20·11-s + 0.288i·12-s − 1.10i·13-s + (−0.258 − 0.516i)15-s + 0.250·16-s − 1.45i·17-s + 0.235i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (229, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.304357 - 1.28928i\)
\(L(\frac12)\) \(\approx\) \(0.304357 - 1.28928i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 + iT \)
5 \( 1 + (-2 + i)T \)
19 \( 1 - T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 - 6iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 14iT - 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 8iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23329464756720269519501952407, −9.760495732942717985819936591379, −8.609356843080483474480513949284, −7.899980267027830944401240189752, −6.73519482891855758349620952875, −5.40969598714047347836151956300, −5.01680085486630376879797109998, −3.12160359901020048538613695460, −2.26945513601220936872196404569, −0.74937687554549699097085119247, 2.10180563193725297307983955965, 3.55211255126426616751106338385, 4.78021947125316864590275242887, 5.68045820068518689822331327989, 6.46297204943467024401033728284, 7.47683564774457667421793465899, 8.565529098615976236460109950961, 9.288803807794320598797227422516, 10.34091002365277322260252363673, 10.62377838197558305350434494111

Graph of the $Z$-function along the critical line