Properties

Label 2-570-285.47-c1-0-7
Degree $2$
Conductor $570$
Sign $-0.0972 - 0.995i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.819 − 0.573i)2-s + (1.34 − 1.09i)3-s + (0.342 + 0.939i)4-s + (−0.114 + 2.23i)5-s + (−1.72 + 0.129i)6-s + (−4.42 + 1.18i)7-s + (0.258 − 0.965i)8-s + (0.594 − 2.94i)9-s + (1.37 − 1.76i)10-s + (−2.34 + 1.35i)11-s + (1.48 + 0.884i)12-s + (−2.13 + 0.186i)13-s + (4.30 + 1.56i)14-s + (2.29 + 3.11i)15-s + (−0.766 + 0.642i)16-s + (5.48 + 3.83i)17-s + ⋯
L(s)  = 1  + (−0.579 − 0.405i)2-s + (0.774 − 0.633i)3-s + (0.171 + 0.469i)4-s + (−0.0511 + 0.998i)5-s + (−0.705 + 0.0528i)6-s + (−1.67 + 0.448i)7-s + (0.0915 − 0.341i)8-s + (0.198 − 0.980i)9-s + (0.434 − 0.557i)10-s + (−0.706 + 0.407i)11-s + (0.429 + 0.255i)12-s + (−0.591 + 0.0517i)13-s + (1.15 + 0.418i)14-s + (0.592 + 0.805i)15-s + (−0.191 + 0.160i)16-s + (1.32 + 0.930i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0972 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0972 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.0972 - 0.995i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.0972 - 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.416518 + 0.459224i\)
\(L(\frac12)\) \(\approx\) \(0.416518 + 0.459224i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.819 + 0.573i)T \)
3 \( 1 + (-1.34 + 1.09i)T \)
5 \( 1 + (0.114 - 2.23i)T \)
19 \( 1 + (2.70 - 3.41i)T \)
good7 \( 1 + (4.42 - 1.18i)T + (6.06 - 3.5i)T^{2} \)
11 \( 1 + (2.34 - 1.35i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (2.13 - 0.186i)T + (12.8 - 2.25i)T^{2} \)
17 \( 1 + (-5.48 - 3.83i)T + (5.81 + 15.9i)T^{2} \)
23 \( 1 + (-0.145 - 0.0679i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (0.197 - 1.11i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (5.32 - 9.22i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (4.34 + 4.34i)T + 37iT^{2} \)
41 \( 1 + (-5.93 - 7.06i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-0.248 + 0.115i)T + (27.6 - 32.9i)T^{2} \)
47 \( 1 + (1.60 + 2.29i)T + (-16.0 + 44.1i)T^{2} \)
53 \( 1 + (9.55 + 4.45i)T + (34.0 + 40.6i)T^{2} \)
59 \( 1 + (-1.11 - 6.33i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-10.8 + 3.93i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (3.08 - 2.16i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (3.25 - 8.93i)T + (-54.3 - 45.6i)T^{2} \)
73 \( 1 + (-1.24 + 14.2i)T + (-71.8 - 12.6i)T^{2} \)
79 \( 1 + (-0.752 - 0.896i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-7.77 + 2.08i)T + (71.8 - 41.5i)T^{2} \)
89 \( 1 + (-1.54 - 1.29i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (-0.808 + 1.15i)T + (-33.1 - 91.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60428405512242726846090160741, −10.03007137223200951104836057498, −9.387662627990253990779428047095, −8.308972334096066057243045859578, −7.44725963151138854024613670542, −6.73490303009016195993125435620, −5.84922496040855290253497557322, −3.59830157034657466886773269788, −3.06735973283284766534483471567, −2.00575074066078807956458322553, 0.35934969775411640110576307936, 2.58058050518432744103532197185, 3.69999105235124227508823137943, 4.93925203065491980617740053389, 5.87244781251928452405019088591, 7.24072800385039842257548941912, 7.894387724150502041847142216932, 8.946397837644550578229196679799, 9.597850261751306946755458845564, 9.994365802793231578896311011274

Graph of the $Z$-function along the critical line