Properties

Label 2-570-285.284-c1-0-7
Degree $2$
Conductor $570$
Sign $-0.861 + 0.507i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−0.5 + 1.65i)3-s − 4-s + (0.584 + 2.15i)5-s + (−1.65 − 0.5i)6-s + 4.86i·7-s i·8-s + (−2.5 − 1.65i)9-s + (−2.15 + 0.584i)10-s − 2.31i·11-s + (0.5 − 1.65i)12-s − 3.31·13-s − 4.86·14-s + (−3.87 − 0.109i)15-s + 16-s + 4.86·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (−0.288 + 0.957i)3-s − 0.5·4-s + (0.261 + 0.965i)5-s + (−0.677 − 0.204i)6-s + 1.83i·7-s − 0.353i·8-s + (−0.833 − 0.552i)9-s + (−0.682 + 0.184i)10-s − 0.698i·11-s + (0.144 − 0.478i)12-s − 0.919·13-s − 1.29·14-s + (−0.999 − 0.0283i)15-s + 0.250·16-s + 1.17·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.861 + 0.507i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.861 + 0.507i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.861 + 0.507i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (569, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.861 + 0.507i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.286765 - 1.05255i\)
\(L(\frac12)\) \(\approx\) \(0.286765 - 1.05255i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + (0.5 - 1.65i)T \)
5 \( 1 + (-0.584 - 2.15i)T \)
19 \( 1 + (-2.31 - 3.69i)T \)
good7 \( 1 - 4.86iT - 7T^{2} \)
11 \( 1 + 2.31iT - 11T^{2} \)
13 \( 1 + 3.31T + 13T^{2} \)
17 \( 1 - 4.86T + 17T^{2} \)
23 \( 1 - 6.03T + 23T^{2} \)
29 \( 1 + 1.35T + 29T^{2} \)
31 \( 1 + 8.55iT - 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 3.50T + 41T^{2} \)
43 \( 1 - 1.16iT - 43T^{2} \)
47 \( 1 + 5.04T + 47T^{2} \)
53 \( 1 - iT - 53T^{2} \)
59 \( 1 - 9.90T + 59T^{2} \)
61 \( 1 - 4.31T + 61T^{2} \)
67 \( 1 + 7T + 67T^{2} \)
71 \( 1 - 10.8T + 71T^{2} \)
73 \( 1 - 11.0iT - 73T^{2} \)
79 \( 1 - 4.67iT - 79T^{2} \)
83 \( 1 + 9.72T + 83T^{2} \)
89 \( 1 - 8.55T + 89T^{2} \)
97 \( 1 + 16.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32471016667434285402385691765, −10.04676789418749122585489989312, −9.590310140197433589331450156805, −8.700223106216884474546103036924, −7.74920041628585370298865558803, −6.45844612247426110392863116374, −5.60013423613056422840988460196, −5.25301177104059500027072614920, −3.54703822026208896948739037395, −2.64768766831177788697972177238, 0.67689418862392362457379480049, 1.60666777510074368458970204794, 3.23542272071813065947121546218, 4.68844190599688906920407234780, 5.24342530594510681439838793709, 6.93396602236311139944091256054, 7.40284609017287548184756412071, 8.421587263732724150382325976049, 9.582469184216473243351655408437, 10.25645238322301282724034376023

Graph of the $Z$-function along the critical line