L(s) = 1 | + i·2-s + (−1.41 − i)3-s − 4-s + (−1.73 − 1.41i)5-s + (1 − 1.41i)6-s + 2.44i·7-s − i·8-s + (1.00 + 2.82i)9-s + (1.41 − 1.73i)10-s − 1.41i·11-s + (1.41 + i)12-s − 4.24·13-s − 2.44·14-s + (1.03 + 3.73i)15-s + 16-s + 6.92·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.816 − 0.577i)3-s − 0.5·4-s + (−0.774 − 0.632i)5-s + (0.408 − 0.577i)6-s + 0.925i·7-s − 0.353i·8-s + (0.333 + 0.942i)9-s + (0.447 − 0.547i)10-s − 0.426i·11-s + (0.408 + 0.288i)12-s − 1.17·13-s − 0.654·14-s + (0.267 + 0.963i)15-s + 0.250·16-s + 1.68·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.778 - 0.628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.778 - 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.809325 + 0.285940i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.809325 + 0.285940i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (1.41 + i)T \) |
| 5 | \( 1 + (1.73 + 1.41i)T \) |
| 19 | \( 1 + (-4 + 1.73i)T \) |
good | 7 | \( 1 - 2.44iT - 7T^{2} \) |
| 11 | \( 1 + 1.41iT - 11T^{2} \) |
| 13 | \( 1 + 4.24T + 13T^{2} \) |
| 17 | \( 1 - 6.92T + 17T^{2} \) |
| 23 | \( 1 - 3.46T + 23T^{2} \) |
| 29 | \( 1 - 2.44T + 29T^{2} \) |
| 31 | \( 1 - 6.92iT - 31T^{2} \) |
| 37 | \( 1 - 4.24T + 37T^{2} \) |
| 41 | \( 1 - 12.2T + 41T^{2} \) |
| 43 | \( 1 - 7.34iT - 43T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + 4.89T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + 4.89T + 71T^{2} \) |
| 73 | \( 1 + 14.6iT - 73T^{2} \) |
| 79 | \( 1 - 10.3iT - 79T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 + 2.44T + 89T^{2} \) |
| 97 | \( 1 - 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03976974283268020005006569680, −9.783980290973786767060688360493, −8.925492098757938793347713248534, −7.80940937483132143668893384871, −7.45956079957820625990224596941, −6.20694301121805943335323396438, −5.28157993116816970449625341151, −4.78682765682837991126848067913, −3.03858777808618800227591470711, −0.966176085487300710750832794509,
0.789438381233177665965792283585, 2.97401590229859143539686600756, 3.95535799108867139064277337333, 4.75020795196865043886193082713, 5.88436842307765057757037177779, 7.31915108487835809235125666066, 7.65995044243845704150285997552, 9.390780802463900415880071792575, 10.05774879266278262339749804414, 10.59555086548566471382455631184