Properties

Label 2-570-19.7-c1-0-5
Degree $2$
Conductor $570$
Sign $-0.996 - 0.0841i$
Analytic cond. $4.55147$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + (−0.499 + 0.866i)6-s − 2.64·7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 6.29·11-s − 0.999·12-s + (−1.32 − 2.29i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (2.82 + 4.88i)17-s − 0.999·18-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + (−0.204 + 0.353i)6-s − 0.999·7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s − 1.89·11-s − 0.288·12-s + (−0.353 − 0.612i)14-s + (−0.129 + 0.223i)15-s + (−0.125 − 0.216i)16-s + (0.684 + 1.18i)17-s − 0.235·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 - 0.0841i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.996 - 0.0841i$
Analytic conductor: \(4.55147\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{570} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 570,\ (\ :1/2),\ -0.996 - 0.0841i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0495143 + 1.17540i\)
\(L(\frac12)\) \(\approx\) \(0.0495143 + 1.17540i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (-0.5 - 0.866i)T \)
5 \( 1 + (-0.5 - 0.866i)T \)
19 \( 1 + (1.67 - 4.02i)T \)
good7 \( 1 + 2.64T + 7T^{2} \)
11 \( 1 + 6.29T + 11T^{2} \)
13 \( 1 + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-2.82 - 4.88i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-1.82 + 3.15i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 7.29T + 31T^{2} \)
37 \( 1 - 8.29T + 37T^{2} \)
41 \( 1 + (-4.32 - 7.48i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3 + 5.19i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (6.29 - 10.8i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-2.32 + 4.02i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (2.64 + 4.58i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.46 - 6.00i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-4.82 + 8.35i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-6.82 - 11.8i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (6.82 + 11.8i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (2.64 + 4.58i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 16.5T + 83T^{2} \)
89 \( 1 + (6.61 - 11.4i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-0.822 - 1.42i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89722673123411505526782246117, −10.11332518572573204153771165085, −9.632305621539471641616258867165, −8.116640656768927225030350494534, −7.88515414424776816259659230251, −6.38030463779941462824574333830, −5.83051844556322620255475760146, −4.66894962608126442547766659051, −3.47258175047305593146733615536, −2.60320832183567795665031102675, 0.54406922090901035924224570178, 2.48870576477034165880532921844, 3.07140812508194113775194924889, 4.68316212317298898606494462527, 5.54035984744261608199304680853, 6.62687841902815410737963705239, 7.66543134650304003649107453855, 8.633033013652491677984458721425, 9.653050966460284776950613624070, 10.21167479761409603935958184887

Graph of the $Z$-function along the critical line