L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.499 + 0.866i)6-s + 1.75·7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 + 0.866i)10-s − 2.20·11-s + 0.999·12-s + (1.60 − 2.77i)13-s + (−0.876 − 1.51i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−3.58 − 6.21i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.223 − 0.387i)5-s + (−0.204 + 0.353i)6-s + 0.662·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s − 0.666·11-s + 0.288·12-s + (0.445 − 0.770i)13-s + (−0.234 − 0.405i)14-s + (−0.129 + 0.223i)15-s + (−0.125 − 0.216i)16-s + (−0.869 − 1.50i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0517382 - 0.722379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0517382 - 0.722379i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.727 + 4.29i)T \) |
good | 7 | \( 1 - 1.75T + 7T^{2} \) |
| 11 | \( 1 + 2.20T + 11T^{2} \) |
| 13 | \( 1 + (-1.60 + 2.77i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.58 + 6.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.10 - 1.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.83 - 6.63i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.20T + 31T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (5.23 + 9.06i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.35 - 2.35i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.96 + 8.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.48 - 9.49i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.98 + 5.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0187 - 0.0324i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.58 + 6.21i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.98 - 10.3i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.604 + 1.04i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 14.8T + 83T^{2} \) |
| 89 | \( 1 + (-5.48 + 9.49i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.62 + 9.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64105648262685536574332512647, −9.334999553515678057700729225586, −8.643517476828404758535045357045, −7.68657208886325846783329096860, −7.01865218789872273689281609102, −5.42581857915029863363039621331, −4.78779530973849943736140619428, −3.25912126524700729081238272962, −1.98650257231178791900449618424, −0.47339575712439619994760099565,
1.89313020539395579710417180617, 3.78533305678074866795692812419, 4.64553891232165129010247684664, 5.84724639671609141235556750368, 6.51930344271391958996855568826, 7.79894660276701626173722078385, 8.342024735362605462623418250030, 9.373748485790153101022056059155, 10.35088352281239316984895273922, 10.95046543315519671638520647020