L(s) = 1 | + (−0.173 + 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 − 0.342i)4-s + (0.939 − 0.342i)5-s + (−0.766 + 0.642i)6-s + (−1.59 − 2.75i)7-s + (0.5 − 0.866i)8-s + (0.173 + 0.984i)9-s + (0.173 + 0.984i)10-s + (2.17 − 3.76i)11-s + (−0.499 − 0.866i)12-s + (3.83 − 3.21i)13-s + (2.99 − 1.08i)14-s + (0.939 + 0.342i)15-s + (0.766 + 0.642i)16-s + (0.162 − 0.921i)17-s + ⋯ |
L(s) = 1 | + (−0.122 + 0.696i)2-s + (0.442 + 0.371i)3-s + (−0.469 − 0.171i)4-s + (0.420 − 0.152i)5-s + (−0.312 + 0.262i)6-s + (−0.601 − 1.04i)7-s + (0.176 − 0.306i)8-s + (0.0578 + 0.328i)9-s + (0.0549 + 0.311i)10-s + (0.655 − 1.13i)11-s + (−0.144 − 0.249i)12-s + (1.06 − 0.891i)13-s + (0.799 − 0.291i)14-s + (0.242 + 0.0883i)15-s + (0.191 + 0.160i)16-s + (0.0394 − 0.223i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58400 + 0.120111i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58400 + 0.120111i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 3 | \( 1 + (-0.766 - 0.642i)T \) |
| 5 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (2.82 - 3.31i)T \) |
good | 7 | \( 1 + (1.59 + 2.75i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.17 + 3.76i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.83 + 3.21i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.162 + 0.921i)T + (-15.9 - 5.81i)T^{2} \) |
| 23 | \( 1 + (-5.97 - 2.17i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (0.879 + 4.98i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-2.57 - 4.45i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 1.98T + 37T^{2} \) |
| 41 | \( 1 + (8.08 + 6.78i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (4.10 - 1.49i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.59 - 9.07i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + (-4.41 - 1.60i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (-2.31 + 13.1i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (-8.21 - 2.98i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-2.71 - 15.4i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (10.5 - 3.85i)T + (54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (-12.7 - 10.6i)T + (12.6 + 71.8i)T^{2} \) |
| 79 | \( 1 + (6.69 + 5.61i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (2.22 + 3.85i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.21 + 7.73i)T + (15.4 - 87.6i)T^{2} \) |
| 97 | \( 1 + (-2.05 + 11.6i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46620687211842572065492245874, −9.877622424485064517915951716210, −8.777351573497185681448857044344, −8.321301116740711492502163250297, −7.11228585545523813565508587005, −6.25809805725444830706215992141, −5.37734398070317283508263707249, −3.97549521280550000102841580202, −3.27040862525733456523789223764, −1.02241324143229531504490359387,
1.63850319801149132434811023687, 2.58192407301158852374975642740, 3.75251137402945864965678354884, 4.99458270285813387130876238775, 6.40448614593681237901595581301, 6.92588448508576774931202604059, 8.523932341296128724923509432625, 9.023864093632022254982849710192, 9.670158151321417910731286976093, 10.71272471618205236353285073683