L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.43 − 0.966i)3-s + 1.00i·4-s + (−1.74 + 1.39i)5-s + (−1.69 − 0.333i)6-s + (0.371 − 0.371i)7-s + (0.707 − 0.707i)8-s + (1.13 − 2.77i)9-s + (2.22 + 0.248i)10-s − 4.73i·11-s + (0.966 + 1.43i)12-s + (3.07 + 3.07i)13-s − 0.524·14-s + (−1.16 + 3.69i)15-s − 1.00·16-s + (−2.77 − 2.77i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.829 − 0.557i)3-s + 0.500i·4-s + (−0.781 + 0.624i)5-s + (−0.693 − 0.136i)6-s + (0.140 − 0.140i)7-s + (0.250 − 0.250i)8-s + (0.377 − 0.925i)9-s + (0.702 + 0.0785i)10-s − 1.42i·11-s + (0.278 + 0.414i)12-s + (0.852 + 0.852i)13-s − 0.140·14-s + (−0.300 + 0.953i)15-s − 0.250·16-s + (−0.672 − 0.672i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0731 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0731 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.886566 - 0.953961i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.886566 - 0.953961i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.43 + 0.966i)T \) |
| 5 | \( 1 + (1.74 - 1.39i)T \) |
| 19 | \( 1 + iT \) |
good | 7 | \( 1 + (-0.371 + 0.371i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.73iT - 11T^{2} \) |
| 13 | \( 1 + (-3.07 - 3.07i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.77 + 2.77i)T + 17iT^{2} \) |
| 23 | \( 1 + (-5.62 + 5.62i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.06T + 29T^{2} \) |
| 31 | \( 1 - 3.53T + 31T^{2} \) |
| 37 | \( 1 + (-2.20 + 2.20i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.41iT - 41T^{2} \) |
| 43 | \( 1 + (6.80 + 6.80i)T + 43iT^{2} \) |
| 47 | \( 1 + (5.86 + 5.86i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.65 - 6.65i)T - 53iT^{2} \) |
| 59 | \( 1 - 6.00T + 59T^{2} \) |
| 61 | \( 1 + 3.00T + 61T^{2} \) |
| 67 | \( 1 + (-4.01 + 4.01i)T - 67iT^{2} \) |
| 71 | \( 1 - 3.67iT - 71T^{2} \) |
| 73 | \( 1 + (-7.51 - 7.51i)T + 73iT^{2} \) |
| 79 | \( 1 - 7.93iT - 79T^{2} \) |
| 83 | \( 1 + (7.74 - 7.74i)T - 83iT^{2} \) |
| 89 | \( 1 - 7.13T + 89T^{2} \) |
| 97 | \( 1 + (-5.01 + 5.01i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74067050878610330158606931048, −9.447933836199028972240931989503, −8.514683918956608059758713169855, −8.243761123595469187097728096725, −6.94523370900797341677468455093, −6.48427757332766572794074558997, −4.43119628811036897815910425535, −3.37670881674209969781743584336, −2.59993654907193524657562498764, −0.875658315803429332000946992547,
1.61213816136139132683437054838, 3.31292880302429385094108340056, 4.47391162055656048729364533541, 5.19635497965501446115589401370, 6.71835215783471964462309504854, 7.78092785146254983811669376054, 8.266845880557848840856422087780, 9.078887740679253347027575643552, 9.866287581389880305746775456408, 10.72670434558361799658811135892